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Abstract

In this report we describe development and implementation of a

general theoretical approach to dzascribing the properties of defects and

impurities in non-metallic solid systems is well as its bulk properties.

This approach combines fully correlated, fully self-consistent

electronic structure determination of the electrical and mechanical

properties associated with neutral and charged defects/impurities in or

on a non-metal. The system remote from the defect is described by the

shell model which incorporates self-consistently, host polarization and

distortion. This results in our being able to obtain absolute energies

of the impurity ions in the host and their interaction. The model is

free of adjustable or undefined parameters. This project is of non-

trivip.1 magnitude and the current computer implementation, which is

functional in our laboratory, consists of a program, ICECAP, which is

about 100,000 statements long. This program is the result of extensive

collaboration between our group and that of Professor J.M. Vail,

University of Manitoba, and of Dr. A.M. Stoneham, Harwell, AERE.



Summary of Project

This projilct, since its beginning, has been dedicated to
understanding the fundamental properties that control the electronic
structure and also, ultimately, the chemical properties of energetic and
other molecular solids. This project began envisioning the need to
understand the fundamental electronic structure of energetic materials.
This was, and to an extent still remains, an area in which there are
very few definitive studies. The normal methodology employed by
researchers in the area of solid state physics would be to attempt to
determine the electron energy band structure of such systems and it was
here that this project began. Immediately, there is a point of
contention, namely what model should one adopt for describing the
electronic energy band structure of such a system. Conventional solid
state wisdom would imply that one should begin with a general first
principles methodology called density functional theory. However, past
experience in applying density functional theory to materials with
similiar electrical properties to most of the energetic materials, that
is, to molecular systems such as the solid rare gases or other
insulating systems such as the alkali halides has indicated that the
density functional methods provide an extremely poor initial guess as to
the band structure of the systems involved. Therefore, the likelihood
of obtaining a qualitatively correct and certainly a quantitatively
correct description of the electronic properties of such systems is
highly unlikely. It has also been known for some time, due to in part
the early studies of this principal investigator that Hartree-Fock
methodologies, although cumbersome, in application to metallic or near
matallic systems are nonetheless capable of providing extremely accurate
descriptions of the electronic properties of insulating systems
including the solid rare gases in the alkali halides. It is with these
methodologies therefore, that we decided to begin.

The type of electronic properties that one would wish to describe
accurately for the bulk of materials include the following. We would
like to have an accurate description of the shape and widths of the
occupied electronic energy bands. We would like to have a good estimate
of the non-occupied or virtual energy bands and shapes, in particular,
since their width extends from the point of inception to the positive
infinite. We are interested principally in an accurate description of
the density of states and also the absolute energy value at which the
onset of these continuous bands begin.

Next, we would like to obtain an accurate description of the optical
spectroscopy of such systems. This does not just include some kind of a
convolution of the electronic occupied with the electronic virtual
bands, but also includes those modifications caused by tVie coulomb
correlations provided by the interaction of an outgoing electron, that
is, the electron being excited with the net positive hole left behind in
the valence band. Such excited states in solid state physics are
normally termed excitons and it was with these problems that we began.

In order to begin we initially sought to verify our methodologies
which consisted of the use of many body perturbation theory on top of an
unrestricted Hartree-Fock calculation and so our initial starting point
was with the free space methane molecule itself. In this study which is
described fully in appendix A we determined a basis set which was proven



accurate to be able to account for the total correlation and total
system energy of the methane molecule to within 2 tenths of an eV of the
experimental value. This is a calculation that was roughly comparable
in accuracy to the best available in the literature at that time. In
addition, this calculation was pushed through to provide a description
of the methane excited state spectrum, This again is fully described in
a)pendix A, however, it is my intent to call attention to one very
significafit and important fact which arose from this study and that is
in systems that contain extremely light and mobile ions such as the
hydrogen nuclei or protons in the methane milecule that the vibrational
amplitude of such protons is sufficient that there is considerable
overlap in the vibronic wave functions of Frank-Condon type excited
states and those of reduced symmetry. In fact, it has been demonstrated
here with the extremely accurate calculations available that the methane
molecule relaxes directly into a lowered symmetry than the ground state
and it is these states which in fact dominate the excited states
spectrum not the Frank-Condon states as we normally expect. This is
carefully documented in appendix A. Subsequent to the study on the
methane molecule we began a description of the local states of the
methane solid by constructing a cluster consisting of a central cell
methane molecule and the surrounding twelve nearest neighbor methanes.
This is a cluster consisting of 65 atoms in all. Again, studies were
made of the ground excited state, and spectral predictions including
relaxations into modified geometry excited states were obtained. From
this we began to construct an electron energy band model for methane.
Orbitals obtained from the molecular calculation were employed here and
appropriate block states were obtained from them in the Hartree-Fock
limit and as corrected by a use of the electronic polaron which is
really a weakly modified many-body perturbation theory method described
by this author approximately ten or twelve years in the past. These
band structures and their band gaps, band shapes and widths are
described in full in appendix B. In addition in appendix B we will also
find a description of the excited states of the methane system. The
excited states of the methane system, compaired with those that are
measured experimentally, are found to be excitations into relaxed,
lowered symmetry geometries not into the ideal geometry of the methane
crystal itself. Therefore, the important lesson of the molecular study
is found to apply here also. We believe that this is a significant
result and represents, to our knowledge, the first time the solid state
calculation where it was demonstrated that localized excited states of
different nuclear symmetry than the ground state were dominant in
obtaining a spectrum for the system. Subsequent to this, there have
been measurements of the virtual densities of state for the methane
solid made at the University of Sherebrook in Canada. We are happy to
report that these studies confirm the results of the calculation.
Particularly pleasant in our view is the fact that the calculations were
performed well in advance of the measurements. Ve realized at this
point that traditional solid state band theory was not going to provide
a sufficient basis for all of the necessary studies one needs and wishes
to do on energetic materials. At this point we recognized that the real
problems did indeed concern those properties which did not appear to be
simply periodic in the usual band theory sense. An example has also
been given, namely in necessity of including distortions in excited
nuclear geometries. Therefore, we decided to abandon further studies



based entirely upon translation of periodicity using, at best, weak
perturbated methods to modify this and to directly incorporate
localization in further calculations.

A next study performed was a study beginning with the nitro-methane
molecule and then extending to clusters of nitro-methane molecules meant
to simulate properties that could happen in the solid. A very complete
description of this is given in appendix C and is a reproduction of a
thesis submitted by Dave Lucas igraduate student entirely supported by
this project which was recently completed. In the case of the nitro-
methane following on the methane there were no significant surprises of
the nature elucidated by the methane study. However, there were some
features of this calculation that I would like to draw your attention
to, which are fully documented in the appendix C. These are that the
quality of normal fartree-Fock basis sets applied for studies in nitro-
methane have in all likelyhood been less than optimal. In this
particular study as is seen in appendix C we were able to obtain a
substantial reduction in the Hartree-Fock ground state energy over other
calculations that are available. While it is true that much of the
energy is undoubtedly described to core electron it is also true that in
other studies in the absence of counterpoise type methodologies
descriptions of binding and bond energies are likely to be in reasonable
error. In addition to this, we are also able, even on this not
particularly heavy system, to see some effects, we believe, of the size
consistency problem. That is of current concern in areas of quantum
chemistry or solid state physics. That has led some workers to
adoptions of coupled clustered or many-body perturbation techniques.
This is reported and described thoroughly in appendix C, Prios work uses
techniques such as complete single-double CI's have been reported.
Furthermore, Davidson techniques have been used in general to take those
results and extrapolate them to what is a presumed correlation limit.
Nonetheless, you will see that the simple size consistent methods,
generally, considerably enhance the size of the presumed correlation
energies for this molecule. This causes us to question both the
validity of the CI method at least in its limited sense as applied to
this class of system, let alone heavier systems and also to the validity
and utility of the Davidson extrapolation techniques. We believe that
the use of such methodologies should be further studied and more
convincing cases made either for their validity or their non-validity.
Certainly, on the basis of the results demonstrated for nitro-methane
there is a sufficient reason to question the utility of these methods
for further extension in this type of area unless more complete CI type
calculations can be effected.

Finally, we have begun the development of the method which will
provide for a general description of the properties of defects in and
the defects on other properties of non-metallic systems. This general
method which was described rather thoroughly in our last annual
technical report is termed the ICECAP method. The ICECAP method has
recieved a much more complete analysis since then and an internally
consistent method of application has been developed that should be
applicable to the general class of non-metallic solid. This methodology
including the exact handling of the boundary region between the
classical and semi-classical region and the quantum mechanical region is
thoroughly described in a thesis reproduced in appendixD--by another
student partially supported by this contract. In this appendix you will



see the full theoretical development of the I-ECAP methodology and a
preliminary result for a very sensitive system consistifg of the lithium
impurity in a potassium chloride host. The dominant problem here is
that the lithium, because of its small size does not sit at the center
of~ the well, but goes off center distorting the surrounding well and
hopping back and forth. Even though this method is applied and this is
certainly a preliminLr application which has not shown capable of
producing the exact frequencies, it has been capable of providing fairly
accurate estimates for the barnies to the migration and also a set key
quantities as a Greuneiseu parameter. We believe that this development
will be of significant affect in future studies related to energetic and
other non-metallic solids and we believe that in general the ICECAP
implementation which is driven by and built on the previous developments
reported here is, in fact, a significant advance in the area of non-
metallic and certainly energetic materials.

In summary then, we believe that this project has had a considerable
amount of success in developing, understanding and improving the
methodologies available to us for understanding energetic materials. We
have come up with an accurate and effective description of the bulk band
structure properties of such materials, presumably a two dimensional
slab type implementation would also permit accurate description of the
surface properties of such materials. We have demonstrated that we have
developed extremely accurate methods, even at the molecular level for
describing things such as total energies, excitation energies, even
changes of geometry upon excitation. Finally, we have discovered the
need for, and provided an implementation of, a very exact method for
studying defects in impurity properties in the general class of non-
metallic materials.



Appendix A:

Dynamic Effects in the Excited Spectrum of Gaseous 
Methane
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Excitation energies for the lowest triplets and singlet-triplet
splittings in gas-phase methane including many-body effects

Donald R Beck and A Barry Kunzt
Physics Department. Michigan ltechnological VniUerity. loughton, MI 49931. USA

Rec.jisd 3i Januars 19S4

Abstract. tsing second-order Moller-Plesset perturbation thcor, we have calculated or
estimated ( cst the geometrie s ic alloA for Jahn-Teller distortion) and excitation
energies. .i:. of the live loxest triplets all associated %kith the 2p - 3-, transition of CH,
to be: ('C , . ,I).. 1 unrelaxed) %ith AL = 8.74, 8.95. 9.30 (est). 9.89 (est) and
10.41 eV. The C',, and T , singlets arc found to be 11.33 and 0.22 eV above the respective
triplets. Based on these results, to experimental singlet features at 9.65 eV and 10.33 eV
are assigned to the I)h and 1 , geometries.

1. Introduction

There is much current interest in how energy is localised and released in van der Waals
molecular crystals, of which solid methane is almost an ideal representative due to its
relative theoretical simplicity and because it is best characterised experimentally
(Righini et al 1981 and references therein). One hypothesis (Kunz 1983) is that the
lower lying excitons (electronic excited states, in molecular language), play a funda-
mental role in energy localisation in such solids.

Due to the nature of the chemical bonding (van der Waals) of the solid there should
be considerable similarity between solid and gas, as is confirmed by direct comparisons
of the fundamental spectral region from threshold (--8.5eV) to about 14eV
(Brongersma and Oosterhoff 1969, Koch and Skibowski 1971, Lombos eta! 196 7 a. b,
Ditchburn 1955, Harshbarger and Lassettre 1973). So it is clear that knowledge gained
about gas-phase excitons will be significantly transferable to the solid phase especially
as regards basis set construction (very small, yet accurate sets are obviously needed)
and the role electron correlation plays for excitation energies. Moreover gas-phase
results are necessary to establish gas-solid phase trends in conjunction with results
already available on the rare gases (Moore 1949, Baldini 1962). Finally gas-phase
results are valuable in studying the effects of hydrostatic pressure on excitonic
properties.

Because of the computational method adopted, most of our attention will be
directed towards the triplet excitons (we should note that triplet excitons may have
been already observed in the solid (Brongersma and Oosterhoff 1969)). As the
molecule is to be eventually part of a solid, our greatest interest is in equilibrium
geometries, including Jahn-Teller distortions of the ground-state T, symmetry upon
excitation.

t Permanent Address: Physics Department. University of Illinois, Urbana, IL 618(1 1. lSA.

0022-3700/84/1 12159 + 10S02.25 (() 1984 The Institute of Physics 2159
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A survey of the existing gas-phase literature reveals only a few fairly crude results
(Pauzet et at 1972, Williams and Poppinger 1975) for the lowest (2 p- 3s) triplet (with
no investigation of Jahn-Teller effects); although the singlets have been somewhat
better investigated (Gordon and Caldwell 1979 and references therein. Pauzet et a!
1972, Williams and Poppinger 1975) much of the extra attention has been focused
away from the equilibrium region.

In this work a much more thorough examination of the lowest gas-phase triplet is
presented using many-body methods, and including the effect of Jahn-Teller distortion.
Singlet-triplet splittings for the lowest excitons are obtained at the Hartree-Fock level
and used to partially clarify identification of some of the experimental features. Finally.
a small but well optimised correlated basis set has been developed which is suitable
for cluster modelling of the solid.

2. Hartree-Fock methods and results

While there are numerous methods of demonstrated practical utility for treating
many-bod. effects in the gas phase, our choice will be restricted to those which also
offer the greatest practical utility when applied to the cluster. Our current preference,
based in earlier experience (Kunz and Klein 1978, Beck 1981), work reported here,
and Work in progress on the methane cluster as well as atomic excitation energies is
to use for a zeroth-order result the unrestricted Hartree-Fock (tts) solution for the
triplets. (- 0.5'o contamination of S at the tIM level was observed; the ground state
was pure S = 0) to which we apply second-order Rayleigh-Schriidinger perturbation
theory to correct for correlation effects (extension to third and fourth orders is in
progress).

We will represent the triplets with a single Slater determinant, whose elements are
one-electron functions which are products of a pure spin and orbital function. The
orbital functions, which are not artificially constrained to be eigenstates of orbital
operators, are expressed as linear combinations of known atomic orbitals (i.e., the
standard ix m) method is used). The m) are themselves fixed linear combinations of
primitive (elementary) Gaussian functions (the process of establishing the combinations
is called contraction), associated with a unique type (s, x, y, z, xx... xz, xxx ... ec)
and centre with exponent, 4. Once the ,m) are established, the utti procedurc self-
consistently obtains the coefficients preceding the A0. for each so. The computer
algorithms used to perform this task involve the 'labels and integrals' package of the
P01 YA I ()N1 code (Csizmadia et at 1964, Neumann et at 1971 ) and a trm algorithm,
developed primarily by one of us IABK). In order to increase the flexibility of this
approach with regard to the cluster calculations, we have revised the integral package
so that ix ,to calculations can be done (i.e., contraction over (aussian., of different
types and/or centres can be carried out).

In specifying the set of contracted A0, we will use a notation of which the following
is an illustration: [5, I/ I. I/1 :2/1 : 1]. This is shorthand for using two contracted s
functions centred on C (consisting of 5 and I primitives respectively), tyro p on C (one
primitive each), and one d on C (one primitive). Additionally, there is one s function
on -1 (two primitives), one p there (one primitive) and one s midway (unless otherwise
specified) between C and H (one primitive).

Our calculations began with the [7, 2, I/4. 11 set of Dunning and Hta 11977) tnb
the next to last Z, of this work should be 0.4962 and not 4.4962) which were originally
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contracted from the 9s5p, in our notation [1,1, 1, 1, l, 1, 1.1/1, 1, 1, 1. 1. set of
Huzinaga (1965). which we then partially uncontracted to (5, 1,1.1, 1/1, 1, 1, 1). To
this set, the four 1-centred s primitives of Meyer (1973), and one s-bond function
"ere added. The position and exponent of the bond function was then optimised for
the Tj ground state, and the tIM- results contracted with minimal loss (only the H
contraction associated with the Is orbital was excluded). The results of this process
are shown in table I.

Table 1. Contracted" .o from Gaussian basis sets for CH.

C I

0 Is (1 21 , (I 
2

p) C, (2

4233(1 0 011 1 2184 0.0110242 1 s.16 1,1112025 211.14 (.04 2886 11.105 2455
f,34 9 Is.1(19 3299 -001111 8534 3.986 0063 5277 3.(2 0.11311 1889 0.136 q433

1461 11.1145 3934 111190173 1 143 0.16519428 1168116 0.093 394 R 117 818 5
42 5 l) 144574 -1113116828 I 3 94 0 3118 178 0.185 11127 1863 10.151 9823

14 19 11358 41129 (10(71 1964 0 1146 11 131 67015
148 1436 ,43' II. 147 1277 2.9

1 :46- 1) 147 17,, 1IsW;11 2061 155

0 44962 (1,0 1 1 ';St, I 335 573

I).1513 I loo l 384 041411564
112 2

44
81'

lhc 'l pace' conists ot 18 .\) and 711 prmitics. to which we add 24 correlation functions. Vhe Cs
and p sIrtual, are shown m the table In addition. the ,irtuil space includes a d (-I (.61 and an f It =0.5)

centred ot T heI It space also includes an s function centred at the bond midpoint (4, = 1.11 . For the

( geometr.N, the larger r, , has a bond function with 4,= 11.75.

In an attempt to check the ",alencc space saturation for the ground state, the
following function types were added to the set of table I one (in the absence of the
correlation f functions) at a time and exponent optimised: d on C ({ =0.3, -(.01 au
lower). f on C (C =1.4, -0.1102 au lower): p on H ( =0.75, -0.002 au lower) and p
at the bond midpoint (I = 0.45, -O01)I au lower). Due to over-completeness of basis
sets, interference of different effects, etc. we can not simply add these lowerings together
to produce a better value. On the other hand, by directly comparing the Huzinaga
and Saki (1969) 1 ls7p set with the 9s5p set (Huzinaga 1965) we found that about
-0.003 au is 'lost'. Detailcd comparison of the two sets shows that this is to be
associated with the Is electrons, which are of no chemical concern. Comparison of
our tum ground-state results with the accurate calculations of others (Meyer 1973,
Ortenburger and Bagus 1975, Frisch et ul 198(1, Bartlett and Purvis 1980) shows
(table 21 that we do quite well. and the remarks above suggest the bulk of the
discrepancy lies in the deep core region. The basis of table I also includes the diffuse
s of the excited state and the correlation primitives. These additions had little effect
on the tTi ground-state energy. Also included in this table is an estimate of the HI
limit IErmler and Kern 1974, Pople et al 1976) for the ground state.

The triplets of interest to us may loosely be described as those associated with a
2p to 3s transition on C. From previous (Meyer 1973. Dixon 1974) work on CH.
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Table 2. Hartree-Fock energies, E, in au.

stale Method E(au) r(.,,(au) <HCH (deg) Basis

groun.' 1, 1t1
h  

-40.195 17 119.47 6-31 G *

ground I,, ist.F -40.20659 2.065 109.47 (531/311"
ground T, UF -3.8-40.2o768 2.05 109.47 [9.9, 1, 1, 1/5,. 1, 1/I1:44:1
ground T' Hl :, -40.209 037 2.05 109.47 [9,9, 1. 1,1/5, 1.1/1,1/ 1:44,4/: 11
ground T,[" RHtF' -401.214 178 2.050 109.47 C: 12s6p3dlf/H: 6slp/CH: Is
ground T, toRll-,, -40!.214 834 2.066 109.47

6ground -l", Est.
limith -401.219

Triplets
unrelaxed T. UHlF" -39.840762 2.05 109.47 [9, 9.1, 1,1/5. 1, 1/1/1:4,4:1]
relaxed T. UHI'

a  
-39.846921 2.149 1019.47 [9. 9, 1, 1, 1/ 5. 1, 1/ 1/1:4, 4: 1}

D2, LIM
:
" -39.89676 2.1105 14(0.8 [9.9.1,1,1/5,1,1/1/1:4.4:1]

C 2 , UHFd -39.9(19494 2.035: 121.9: [9,9.1,1.1/5.1,1/1/1:4.4:1]
2.221 56.3

Basis set notation is that of the original authors.
"Frisch et a! (1980). The equilibrium distance was obtained from the Uill- minimum.
' Bartlett and Purvis (19801).
"This work. Basis set of table I (NI =42).

This work. On C, v, I =r 1.2) and on H. tr, 1 .50) were added to the basis of table I (NM = 60).
Meyer (1973).
Ortenburger and Bagus (1975).

hErmler and Kern (1974. PopJe et a] 1 1976).

and the excited singlets (Gordon and Caldwell 1979), it is clear that strong Jahn-Teller
effects may be expected in the excited state, which suggests we investigate several
different geometries. We choose to look at a subset of those which Meyer (1973)
looked at: namely the Tj (relaxed and unrelaxed: the latter is likely to give the largest
Franck-Condon factors), and C,, and D2d as these were the two Meyer (1973) found
lowest in energy. Because our ultimate interest is in the solid, the equilibrium regions
of the potential energy surfaces are of greatest interest.

The UHF calculations for the unrelaxed excited state began with the original (prior
to the contraction shown in table 1) ground-state basis, to which a diffuse C-centred
s was added, and then optimised. Subsequent to this, an additional s and p primitive
was placed on the C atom and both optimised-with little effect. These were then
removed. Finally, the calculation was redone, using the contracted ground-state orbitals
of table 1 and the optimised diffuse s, with the net result that the energy was raised
0.006 au.

For the three excited states whose geometry could vary, geometrical optimisation
was performed (UHF level), beginning with the CH bond angles and distances (Meyer
1973). Typically, bond angles were varied in increments of 50, and distances in
increments of 0.1 au. In all cases, the CH4 geometries (Meyer 1973) were found
optimal. For C2, it was found that the longer bond distance had a bond exponent
optimised of C, = 0.75, while the shorter one had the 'standard' value of ., = 1.0. (The
positions of the bond functions were optimised as well; all were found to be at the
midpoint of the bond.)

Our final UHF results for the excited triplets are presented in table 2. It may be
noted that the relative ordering of the results is the same as it is for the ion (Meyer
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1973). In this table, two extra C s, p and one extra C d and f primitive ;ro appear in
the basis which produced the quoted result. These are required by and optimised for,
the correlation part of the problem. Their presence at this stage is due to formal
requirements of the theory (they must contribute to formation of the UHF, or zeroth-
order, Hamiltonian). In fact their presence is also efficacious at the UHF level, for on
average they lower the UHF triplet energies by about --0.008 au (probably their
largest contribution occurs from symmetry-breaking polarisation effects associated
with individual MO).

3. Correlation method and results

We choose to correlate our results using second-order Rayleigh-Schradinger perturba-
tion theory with the UHF energy operator used as a zeroth-order Hamiltonian-a
process called unrestricted Moller-Plesset theory (UMP2) by some (Pople et al 1976).
For us, the method possesses several attractions: (i) it is accurate, yet computationally
inexpensive enough to be applied to the .usters of interest, (ii) it requires less decision
making-as opposed to, for example, the symmetry-adapted independent-electron pair
approximation (SA-EPA) we applied before (Beck 1981). This advantage will remain
in the short term, until enough experience is gained to expedite the decision-making
process (to this end, a full analysis, by pairs, is routinely output as part of the correlation
run), (iii) it is generally what is called (Pople et al 1978) 'size consistent' (as is SA-IEPA),

and (iv) extension to higher orders can be made with some ease (Bartlett and Purvis
1980, Pople et al 1978).

In UMP2, the correlation energy Er, .. is given by (Bartlett and Purvis 1980):

E = - Y I D;,,(ijl lab)2 . (1)
4 uj ab

where

Dah,= E + , - Ee, (2)

and

(illI b 0*1()(2) 1 (0a(1) Ob(2) fh()Vi.Js(2)) drI dr 2. (3)

In the above, the i, j subscripts refer to the occupied uHF spin--orbitals, and the a, b
subscripts to the unoccupied UHF spin-orbitals (called 'virtuals'). The k are the output
molecular spin-orbitals obtained from the self-consistent UHF process, and the e are
the corresponding eigenvalues. The absence of single excitations in equation (1)
presumes that a 'good' UHF solution has been constructed.

By far the most computationally expensive part of evaluating equation (1) is
transformation of the integrals from the AO form to the Mo form. We have constructed
an algorithm to do this which replaces each of the quadrupole sums with four linear
sums (e.g. Shavitt 1977), uses random-access scratch files, makes full use of the
symmetry of partially transformed integrals, establishes a threshold for the AO integrals
below which they are discarded (prior to transformation), and which uses an unpacked
set of labels. For the final function space which consists of 84 orbitals (42 in each spin
space), typical computation times were about 10 h on the VAX 11/750 equipped with
a floating-point accelerator.
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In developing a correlated basis, our procedure was to contract the UHF solutions
as much as possible (see § 2), to allow maximum control over virtual space convergence.
A set of primitive Gaussians was then added to this set to represent the virtuals (at
the UHF stage). The exponents of this virtual set were initialised by forcing the (r) for
the primitive GTO to be the same as the (r) for the carbon 2s and 2p functions, as
suggested earlier (Beck and Nicolaides 1978). These were then optimised by minimising
the valence part of E.-,, for the ground state. In almost all cases, the optimum
exponent was very close to the initial one, as had been suggested. It should be noted
that for each virtual type, GTO are just about as good as Slater-type orbitals (Meyer
1973. Beck and Nicolaides 1978) i.e., as rapidly convergent; about 70-80% of a pair's
/-dependent correlation energy is obtained with a single primitive.

The virtual correlation set was developed with two general principles in mind: (i)
it must be small enough to be used in the cluster, yet (ii) accurate enough to account
for the triplet excitation energy as well. We began with a single optimised virtual s,
p and d centred on carbon, which gave us a gap (to unrelaxed Td) of 10.42 eV, and
which yielded a ground-state UMP2 valence correlation energy of -0.1357 au. As will
be seen from table 4, this excitation energy is in excellent agreement with our final
value-and it is in fact this set which has been used in the cluster calculations.

In order to test how converged the set was, and to provide a benchmark test of
the method, our virtual set was further augmented in two stages. First, an extra s and
p were added, along with one f virtual; all were centred on C and exponent optimised.
This set (42 AO) turned out to be the standard gas phase one-and all triplet as well
as the ground-state (see table 3) correlation energies were obtained using it, It can
be seen from table 4 that the Td gap changed by only 0.01 eV.

To provide a benchmark test on the ground state, this set was then augmented
with an extra exponent optimised Cd ((= 0.2) and p on the H(C,=0.50), and

Table 3. Correlation energies' (in au) for CH 4 .

State Method Valence All electron

Ground state Td UMP 2b -0.164(0 -0.2018
Ground state Td RMP2C -0.1826 -0.2224
Ground state Td LIMP2' -0.18980

Ground state Td UMP2, -0.1373 -

Ground state T. PNO-Ci f  
-0.2442

Ground state Td Expt" -0.240 -0.293

Triplets
Unrelaxed Td UMP2

b  
-0.1484 -0.1863

Relaxed Td UMP 2b -0.1415 -0.1794
D 2d UMP2

"  
-0.1461 -0.1840

C', UMP2
b  -0.1410 -0.1789

' Geometries and basis sets as shown in table 2.
"This work; NBF = 42 (see table I).
Adding v, on C. v. on H (see footnote e, table 2). Done at the restricted level.
Bartlett and Purvis (1980).

Frisch et at (1980).
'Meyer (1973).

Pople and Binkley (1975).
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Table 4. Theoretical excitation energy (in eV) AE to lowest triplets.

Upper state Method IE

Unrelaxed Td UMP2
a  10.41

E 2 b 10.53
EOM' 9.97
UHF 9.98
S-C

d  
11.40

s-clt 10.55
Relaxed Td UMP2a  10.43

UHF
'  

9.82
D2d UMP2' 8.95

UHF' 8.46
C 2, UMP2' 8.74

UHF' 8.11

This work. Correlated values do not include excitations from the K shell. For the ground
state. NBF 

= 
42 results were used.

" Pauzet et al (1972).
' Williams and Poppinger (1975).
d Kohda-Sudoh and Katagiri (1978); single excitation ci.

correlated using the RHF variant of the code (called RMP2). (Formally, there is no
difference between UHF and RHF correlation for closed-shell ground states; computa-
tionally there is a significant saving because there are half as many Mo orbital
functions.) This lowers the correlation energy by about -0.02 au as shown in table 3
(RMP2).

Let us analyse these RMP results for the ground state. Firstly they surpass the other
two theoretical results (Frisch et al 1980, Bartlett and Purvis 1980) cited using this
method (as do the respective UHF results; see table 2). Next, our RMP2 result for the
ejsjr.d, pair is -0.863 eV (1 au -27.211 61 eV). If we assume that this should be
essentially the Is' pair energy for the carbon atom, which is about 1.1 eV, we see an
error of about -0.009 au has been made in this pair. Of course, a substantial error
in this pair is not unexpected when we recall our virtual exponents were optimised
for the valence part of the correlation energy. A direct comparison with the valence
space PNO-C0 results of Meyer (1973) whose results include certain of the effects of
higher order perturbation theory indicates a valence space error of approximately
-0.012 au (see also table 3).

Both Frisch et al (1980) and Bartlett and Purvis (1980) have estimated that
contributions of third- and fourth-order perturbation theory lower the ground-state
energy by -0.022 to -0.023 au (Bartlett and Purvis (1980) also contend that the
primary effect of basis-set improvement is on the UHF and UMP2 contributions, which
seems reasonable so long as two reasonably accurate sets are being compared, as
appears to be the case here).

Pople and Binkley (1975) have provided us with an estimate of the total experi-
mental correlation energy of CH 4, with relativistic and zero-point vibration effects
removed. Specifically, for all electrons they estimate about -0.293 au of correlation
energy is present (based on Emler and Kern (1974), Pople et al (1976) and the UHF
limit). In the above, we have accounted for -0.222 (UMP2) -0.021 (UMP2 error)
-0.022 (third and fourth order) =-0.265 au, leaving us -0.028 au short.
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4. Excitation energies and singlet-triplet splittings

In table 4, the triplet excitation energies obtained by UHF and UMP2 methods are
presented. It can be seen that correlation typically increases the gap some 0.5 to
0.6 eV. We feel that the triplets have a larger erior associated with them then does
the ground state, due to the loss due to contraction (however some of the loss of about
+0.006 au may be recovered via the virtual s and p centred on C), the spin impurity,
and the fact that the virtual set has been optimised for the ground state (pair energies
associated with the 3s orbital will be most sensitive to this). If this error were larger
than that for the ground state, then our excitation energies would be larger than the
exact results. To check the size of the relative error, we have computed the 2p2 3p-+
2p3s 'Po excitation energy of the C atom using the CH 4 basis with the result that our
value is only 0.08 eV larger than experiment (Moore 1949). Similar errors in other
atomic excitation energies obtained using this method are found.

We may also compare our gaps with the related ones obtained by Meyer (1973)
for the CH4 states (ionisation process). Using C2, as a reference, his PNO-Ci D2d is
+0.0062 au higher, ours (excitation) is +0.0077 au, his unrelaxed Td is 0.062 au and
ours is 0.061 au higher. On the other hand, our 'relaxed' Td is actually slightly higher
than our unrelaxed value after correlation (at the UHF level, the ordering is reversed;
recall geometry optimisation was performed at this level). This appears to be a clear
manifestation of the errors referred to above.

In table 4, the lowest triplet excitation energy has also been compared with the
theoretical work of other approaches which were all computed using methods and/or
basis sets of perhaps less intrinsic merit. None the less, there are two other theoretical
values fairly close to our results-one obtained by Pauzet et al (1972) using second-
order perturbation theory and one by Williams and Poppinger (1975) using single-
excitation c¢i.

Rather than formulate and implement a UHF-based approach to open-shell singlets,
we will use an RHF approach implemented with the codes of Goddard et al (1972).
The results of doing this with the basis of table 1, without any virtuals (NBF = 18), are
shown in table 5. Typically the singlet-triplet splittings are 0.2-0.3 eV which are in
good agreement with most other ab initio theoretical work (Pauzet et al 1972, Williams
and Poppinger 1975, Kohda-Sudoh and Katagiri 1978). They also agree well with the
splittings observed (Moore 1949) in atomic C and Ne, for the 2p3s configuration.

We finally turn to the question of comparing our predictions with experiment. We
first note that there are at least two more. geometries with friplets potentially below
the Td triplet (see Meyer 1973). These are the C.3. and D4h geometries and if the
spacings of CH4 are maintained (as they were for C2,, D2d and Td), their estimated
positions would be at 9.30 and 9.89eV respectively. The relative ordering of the
triplets is then C2,, D2, C3,, D 4h, Tj with excitation energies 8.74, 8.95, 9.30 (est),
9.89 (est) and 10.41 eV (unrelaxed) with singlets presumably lying 0.2-0.3 r above
these.

Harshbarger and Lassettre (1973) have measured the electron impact spectra and
found a broad diffuse spectra which is difficult to deconvolute in the 8.55-10.95 eV
region. This region possesses two maxima, one at 9.65 eV and one at 10.33 eV which
they ascribe to a 2p--* 3s transition (see also Koch and Skibowski 1971). Based on
energy considerations we might assign these to the D4h and Td geometries respectively
(a more conclusive assignment would involve simultaneous comparison of oscillator
strengths; however, accurate ab initio theoretical ones seem currently unavailable).
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Table 5. Theoretical singlet-triplet splittings (eV), AE,.

Species/state Method AE,, (eV)

CH., unrelaxed Td RHF
a  0.215

s-k'lh 0.21

E2
d  0.34

EOM' 0.27
s-('ff 0.41

CH4, C2, RHF
a  0.330

C atom, 2p3s Expt' 0.202
Ne atom, 2p3s Expt' 0.225

This work (see text).
5 Moore (1949).

Kohda-Sudoh and Katagiri (1978); single excitation ct.
Pauzet et al (1972).

Williams and Poppinger (1975).

Brongersma and Oosterhoff (1969) believe they have directly seen transitions to

two triplets at 8.8 and 11.0 eV. This large splitting (0.7-1.0 eV) is supported by
Katagari and Sandorfy's (1966) semi-empirical calculations but is in obvious contradic-

tion to all ab initio results. Kohda-Sudoh and Katagiri (1978) suggest that the larger

splitting would occur if the excited state orbital had a significant valence (i.e. compact)
component. However, an alternative explanation consistent with both the measure-

ment and theory is possible-namely, that the triplets have been assigned to the wrong

singlets. The 8.8 eV triplet feature could well be assigned to the C2, singlet and the

9.80 to the D4h feature; under these circumstances, the splitting would be no more

than a few tenths of an eV.
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Appendix B:

Band Theory and Excitonic Effects in Energetic Solids:

Example of Solid Methane



THEORY OF THE ELECTRONIC STRUCTURE AND OPTICAL
PROPERTIES OF ORGANIC SOLIDS: COLLECTIVE EFFECTS*
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Abstract: In this series of lectures we briefly consider two
complimentary approaches to the study of organic solids: The
method of simulation by finite clusters of molecules, and the
methods of energy band theory. In both cases, the initial
starting point is the Hartree-Fock method, which, as expected,
turns out to be inadequate for any reasonable level of quanti-
tattve accuracy. Solids, being essentially infinite sized
systems, restrict our choice of correlation methods to those

which are size consistent. We are furthermore interested in
properties such as optical excitation and need to be able to
obtain the finite difference between extensive total energies.
This further restricts our choices. Methods based upon ordinary

Rayleigh-Schrodinger Perturbation-Theory are chosen and exten-
sive results for solid CH 4 are used as an illustration.

This research has been funded in part by the U. S. Navy Office
of Naval Research, ONR-N-0014-81-K-0620, in cooperation with the
Department of Physics, Michigan Technological University, and by

the National Science Foundation, DMR-80-20250 In cooperation
with the Materials Research Laboratory of the University of

Illinois.

1. Introduction.

Theoretical studies on the electronic structure of three
dimensional solids have largely excluded the organic or molec-

ular solids. The vast majority of existiny calculations have

been performed for the solid rare gases. More complicated
molecular solids, such as those with two or more atoms per molecu-
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lar unit, or more than one molecular unit per unit cell, have
been largely ignored. The principal exception to this tendency
has been for solid .{2 .  It should be further noted, that the
interest in solid H2 stems largely from interest in its possible
transformation to a monatomic metal, exhibiting high temperature
BCS type superconductivity. 2  In addition, a recent resurgance
of interest in the solid rare gases has been generated by
speculations that "lw" pressure (@0.3 M bar) metal phases of
solid Xe4 m ght exit. In addition, some theoretical studies on
solid N2  and H20 exist. In additiwn, quite a few studies on
properties of polymer systems exist." There are probably many
reasons for the neglect of this interesting and technologically
interesting class of solids, Several of the reasons are likely
related to the complicated and at times ill-defined crystal
structure of such systems and the associated difficulties in
constructing adequate theoretical models. A second and perhaps
more serious problem relates to the question of which approach
one might use to determine the electrical structure. As an
example, the spectrum of solid CH4 has been determined over an
energy range of 8 to about 35 eV. The fundamental spectral
region of from threshold (>8.5 eV) to about 14 eV shows marked
similarity in both solid and gas phase. It is generally
conceded that the gas phase spectra in this energy region is
dominated by transitions from the bonding to antibo~ding bound
state orbitals or to Rydberg series like transitions. It seems
reasonable to expect that the crystalline spectrun is likely to
be similarly dominated by transitions to bound rather than free
final states. That is we do not expect the contributions from
energy band theory to play a major role in the low lying
excitations of solid CH4. On the other hand the spectral region
above 14 or so eV may well be dominated by band to band
transitions and this may account for the apparent differences
between the high lying spectrum of gas phase CH4 and solid
CH4. Similar considerations apply to many other molecular
solids.

The previous theoretical study on solid methane lends cred-
ibility to this argument, as the calculation of Piela,
Pietronero, anI Resta finds a band gap in excess of 27.2 eV for
solid methane. It is not likely that this result is quanti-
tatively accurate as these authors used a very abbreviated basis
set in their calculation and found the conduction results to be
highly sensitive to the virtual basis set. A further source of
error in this early study is the use of the Hartree-Fock approx-
imation uncorrected for any correlation corrections. Similar
studies by Mickish and Kunz on the somewhat similar solid rare
gases have found that the Hartree-Fock method consistently over-
estimates the hand gap of these systems by about 4 or 5 eV.1 In
addition all band methods are inaccurate, in that, all neglect
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the formation of local excited states called excitons.

We believe new approaches are needed if one is to Lruly
interpret the electronic structure of such systems as solid
Methane. Rece't ther- tical results of Kunz and Flynn have
demonstrated that it .s possible to include the effect of
electron-hole interaction and exciton formation without violat-
ing Bloch's theorem in calculations of the optical properties of
such divergent solids as LiF and Mg or Ca. This is accomplished
by means of a degenerate perturbative calculation using the k-
conserved one body valence to conduction band excitations as a
basis. This model retains the periodic symmetry of the lattice
avoiding complications introduced by the use of finite cluster
models to describe the local excitations. These finite cluster
models, nonetheless, are useful and accurate approximates as we
shall see. The formulationm of the problem in this way by Kunz
and Flynn causes one to wish to begin with Hartree-Fock descrip-
tions of the solid since a well defined Many-Body wavefunction
is needed. The Hartree-Fock model neglects all correlations and
the limited basis set used to describe excitonic effects does
not describe properly the relaxation or polarization properties
of the system. In these lectures, the correlation effects are
incorporated by means of a simple Many Body Perturbation Theory
Model (MBPT). The necessary theoretical methods are described
in Section I1. The numerical calculations are described in
Section III, and conclusions are given in the final section.

II. Theoretical Development

The initial step in this development is the choice of the
Hartree-Fock method. This choice is largely determined by the
need to perform extensive correlation calculations in addition
to the initial Hartree-Fock study. To facilitate development,
we employ variants on the familiar Linear-Combination-of-Atomic-
Orbitals method (LCAO). In the case of cluster calculations,
these AO's are first rotated into molecular orbitals (MO's)
spanning the entire cluster, and in the case of the hand calcu-
lations, the AO's are rotated into MO's spanning the crystallo-
graphic unit cell. This rotation into MO's is advantageous be-
cause for unit cells of ever increasing size or complexity, an
adequate description in terms of AO's yields rather large
secular determinants. The LCMO scheme reduces substantially the
size of the secular dgterminant. This method was first intro-
duced by Piela et al. for studies on solid methane. In such a
simple case the basis set for the occupied orbitals is reduced
from 9 to 5 orbitals. Furthermore, the MO's nay contain polari-
zation functions in them and therefore yield far greater
accuracy than a much larger set of AO's.
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The essential features of this approach is this. Let each
unit cell be divided into molecules (real ones or not), and we
devise a basis set to represent the MO's of these molecules.
The primitive basis set used are spherical-harmonic Gaussian
Type Orbitals (GTO's) centered about different origins, and have
the form

Xi(*r-i) = exp t-Zi(t-i) 2 ] YZM (e). (1)

The A are the origins about which these functions are centered
and need not be an actual nuclear site, the y m are the usual
spherical harmonics. The orbital exponent Zi is chosen by
energy minimization. The MO's in turn are just linear
combinations of these GTO's,

4 j (-t~ = ~a~ i~r-i),(2)

The ta's are the locations of the molecules in the system. From
the MO's, one forms Bloch orbitals which span the entire system:

, , N=1/2 i e J +-k.(). (3)

a ~ a

The MO's (Eq. (2)) or the Bloch functions (Eq. (3)) form the
basis by which we solve the HF problem or its extensions.

The first point is that the Hartree-Fock equation need be
solved self-consistently. For a finite molecular cluster, this
is achieved by conventional iterative means. However, the
infinite periodic system imposes special difficulties. These
are simply that the occupied canonical Bloch orbitals are
infinite in number and therefore enumerating the contribution of
each orbital to the Fock operator imposes a strain on ones com-
puter budget. Two options are available. The first is to use a
finite mesh in t- space and use some form of quadrature to
construct the Fock operator. The second is to rotate into a
basis set of local orbitals. I'1 1 ,12  In the early stages, both
methods were tried with negligible differences in numerical
result between them. However, at the current stage of our code
development, the local orbitals method enjoys a substantial
speed advantage.

The intent of the present study is to obtain spectroscopic
information and hence we need examine the meaning of the energy
bands. The occupied bands are the negati, e of the ionization
energy for that band for the state of wave vector t . The
virtual bands are similar representations for the electron
affinities. In this event one is assuming the use of the
Hartree-Fock eigenvalue and also of Koopmans' theorem as is
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usually done. The essential physics here refers to ionization

properties, not to excitation properties of the n-electron

svstem.

In order to improve upon the Hartree-Fock results one must

Include correlation corrections. In doing this, initially the

author will maintain the same physical definition for the energy
hands as in the Koopmans' case. That is, the bands now become

quasi-particle bands in which the energy of an occupied level is

the negative of the energy needed to create it, and the energy

of the virtual states are the negative of the energy recovered

in creating it. This is in keeping with The earlier usage of

the electronic polaron model and its extensions as discussed by

Pantelides et al. 3,141

It is now necessary to discuss correlation corrections.

The first problem is that o size consistency (The total energy

is an extensive quantity). I' In fact the total energy of an

infinite solid is infinite and only the energy/molecule is

finite. Unfortunately, the energy change upon ionization is

also finite and the energy change/molecule vanishes. That is

the energy difference is still finite. Similar considerations

apply to excitations of the n-electron system. A simple clas-

sical way to view this is to realize that the size of the wave

created by hurling a brick into a pond is largely independent of

the size of the pond. Therefore we must establish a size con-

sisLent framework for the system total energies in such a way

that formally we can obtain differences in extensive quantities,

cancelling the infinities before we compute finite differences.

Alternately, we may reduce the size of the systems so that total

energy determinations are possible.

Let us work in a local representation here. This is appro-

priate since many molecular solids are filled shell systems.

For notational simplicitiy, designate the Wannier function

WN(r) as the Ith Wannier function about site A Form a com-

p ete set of Wannier orbitals describing the ground state of the

neutral, N-electron solid in the Martree-Fock limit. We will

use them to generate the ion states as well. For a system of N-

electrons the Hamiltonian is

D 2 7e 1 N N I 2
H -+ 

v -  + 4 c (4)

The electronic has mass m, and is charm e, Z I is the atomic

number of the nucleus at site I. The I electron has coordin-

ate rI and the 1th nucleus has coordinate In terms of

Wannier Functions, in the single determinant limit, the energy

of the system is
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(N).

*N i w I- T- Jh 1-

(N)
+ .W i w.> - Wf Wi j IW. jij w>

The symbol (N) on the summation implies sums over all states In
the occupied N electron space. To keep the physics of the en-
ergy hands discussed earlier we need to look at the N-i and N+I
electron system next.

LeC the ground state of the N-electron Hartree-Fock system
be designated as 'N) and let a +  ap1  create or destroy a
Wannier function at site I with other quantum numbers p. We
adopt the conventive that nuantum numbers i, j, k etc., refer to
occupied orbitals, a, h, c to virtual orbitals and o, p, q to
either/both. A Slater determined of the N-1 body system is

'N-I: iB > N, -, (6)

This will by symmetry adapted later. The energy expectation
value of this state is simply

F FB - I W F(N)w > (7)
N-1 N )

Here F(N) is simply the '-elecCron ground state Hartree-Fock
operator. Similarly one may obtain the off diagonal matrix
elements between two states !N-I, tA> and IN-], jB>. These are:

P IA~j = <w F(N)wA>" (8)
N-1 is IA

One may project on the state !N-I b> to form a proper transla-
tional invariant Bloch function,

(N-I) = k e IIN-; iS>

In terms of eqs (1)-(9) one may construct a band structure in
terms of Wannier-functions and Slater determinante for the
occupied orbitals. These are yet uncorrelated. One may treat
the N+1 body states similarly. Furthermore, recognizing that F5
in eq (II) is infinite and also irrelevant, since energy changes
are needed, we proceed to define Fn as 0, and thus simplify our
computation.

A framework is needed in order to simply correlate this
problem since the simple single Slater determinants In-1, iB>
are highly degenerate, and within a band, the Jp(t) are nearly
degenerate. Consider the problem In a general framework

Initially. P isa Hamiltonian,
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H = H+ v. (10)

We assume that the elgenstates of H are known as

Hol, - w¢Ii. (11)

The projector onto a given eigenstate of Ho say 0l is Pi and is
given as

Pi .0i >0±i

Furthermore a projector onto the first n states say is P and

n n

= I T>9 = I Pi" (12)

Assume we order our eigenfunction of H. so that the states of
interest lie in the range 0 to n. Furthermore no other states
are degenerate with these states. Now let us solve the desired
equation:

K i = E = (H +V)p. (13)
0

Let us chose a w. for I < j C n, then:J

(1-P)(H -w ) = (1-P)(E-wJ-V)Y (14)

One may commute (I-P) with Ho-W j and proceed to see
)-1

=P + (H -W) (1-P) (E-w -V)P. (15)

Furthermore;

Pi = 1, I' T I i 
> '

so that

n

= TkT k = 4. (16)

k=1

Therefore
LI - (H -w ) 1- (1-P)(E-w 1 -V)jt = 4. (17)

O *j

If one defines

T = (I - (H -w.) (1-P)(E-w.-V)}
- (o j] .
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then

= t* . (19)

Furthermore one can show that
n

(E-wi) i T k V ik' (20)
k=1I

where

Vik = 0i(%VT k>. (21)

Eqs. (20) and (21) define a perfectly good algebraic eigenvalue
equation for the system energies. To proceed further, one
expands the inverse appearing in T. That is,

VT N + V H-w (I-P)(E-w j-V) + ... (22)
o j

or

Vik 1 1k a=N+ wJwa Via Vak. (23)

The structure of the eigenvalue problem defined by Eqs (20),
(21) and (23) is now clear. The matrix elements to lowest
approximation are similar to those of second order R.S.P.T. and
this is clearly a size consistent approach. If all the eigen-
vectors in the first n are degenerate, one recovers normal de-
generate perturbation theory. Consider our problem, where we
use Wannier functions, this framework makes our approach
clear. First correlate the single Slater determinant of Wannier
functions, then proceed with Bloch symmetry projection to remove
the degeneracy. The N-body wavefunction has proper Bloch
symmetry for closed band systems. By using a proper choice of A
in the Adams-Gilbert loca] iorbital formulation called Aw one may
obtain Wannier orbitals. The actual choice of Aw is not
important, only that such exist. Then

[F + PAwP1 wil C ciw 1 1  (24)

The first order Fock-Dirac density matrix is p. From this one
constructs a zero order Hamiltonian. For a system of M-
electrons, Ho is defined as

H- fF(- i ) + pjAiWp1 l (25)H° i-l
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and then the perturbation, V becomes

V S- H - H (26)
0

(N) IV aAbB 1 2
(N) 2I

E(N) = EN + I *g "e (27)
iI>jJ aA>bB ii+ jJ -aA -CaB

Here the summation (N) indicates all Wannier orbitals in the N-
electron state. The matrix element is simply

a~B2 2
v <aADB = IrwI WAWbB> -<w1 wl w WbB aA> (28)
iijJ ijl 12 1'wb>r 

12  b

The N-body orbitals will be used to describe both the N-i and
N+l body states. Brillouin's theorem is not valid for such
states. Consider first the N-I body problem. Let Wannier
orbital WiB be deleted from the N-body ground state. Then to
second order one finds that

E(N-,iB) E -D iBiB (N+I) F(N-I;iB)j1 2

+- C -v
n(-,B N-E I IiB

J1 aA J1I-aA

(N-)aAbB 2 
(29)

+ VkKj J
kK>jJ aA>bC ' kK jJ- aA- bC

In Eq (19) the V is still as defined in Eq (18) and F(N-I;iB) is
obtained by deleting terms referring to orbital WiB from F(N).
Therefore

F(N-I;iB) I = <Wl F(N-liB)1WaA>. (30)

One proceeds in like fashion for the N+I electron case, adding
WCB to the N electron state. mA 2

E(N+I;cB) E + DcBcB + 1  + N

jJ aA jJ-aA

(N+l) aAdD 12 
(31)

+ J J--

jJ>kK aA>dD jJ+EkK- aA -aD

In Eq (21) V remains as in Eq (18) and F(N+I;cB) is obtained by
adding terms referring to orbital WcB to the N-electron Fock
operator.

One may obtain the physically interesting energy
differences from these expressions. The ionization potentials

are defined by E(N) - E(N-I;iB). This difference called

.~ ~~~~ ..... . .. .
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here AiB is given as 2
i~B (N-1) I F(N-1 ,iB) j]

A i DiBiB + E -E
JJ aA jj aA

(N) aAcC 12 IBaA 2 (32)
(N)____BJ___ VJJkK

JJ*iB aA>cC iB+ JJ-aA i K aA EJJkK-iH-aA

Likewise the electron affinity terms are obtained by letting
ACB ' E(N+1;CB)-E(N). Then

(N+I) IF(N+I,CB) (N+)

A = D N+_BcNc- + - +
JJ aA JJ -aA il aA>dD*cBa D2vcBaA 2 (3

(VaAdD 2 
(N+I) 

I a j
ViIcB I i.j

E + E -E E C + +E - c - Fil cB - aA - dD il>JJ aA*cB il jJ cB -aA

It is these formulas we will use in this study.

One final piece is needed to complete this theory. This is
to include the actual effect of electron-hole interaction upon
excitation. An accurate method of doing this for both tightly
bound or loosely bound excitations has been recently given by
Kunz and Flynn.

The essential point is to use the Hartree-Fock bands as a
basis set after incorporation of correlation corrections into
the band energies. The Fock ground state IN> is then used to
describe schematically the process. Let a.(t) annihilate a
valence electron of wavevector t and let a+() create a conduc-

c
tion electron of wavevector . Consider the state then:

IN,t> = o,+( ) av( ) IN> (34)

It is only states like this which can he reached from the ground
state via optical processes. Furthermore all such ground
states IN,t> correspond to the same total crystal wavevector;
that of the ground state. The most general excited state that
one may access is then IN, E>, where

IN,e> = a, JN, > (35)

In this sum, the ground state IN> is excluded because it differs
in parity from the excited state. By findtng the a and <N,
FIHIN, E>, one may determine the spectrum of the solid including
electron-hole interaction. This is achieved by means of a CIcalculation among the states IN, t>. The formation of such ex-
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citon states is not an extensive property and size cosistency

is not a problem as demonstrated by Kunz and Flynn. Exact
Implementation of such an infinite CI is of course impossible
and we use a finite number of states, some 270 configurations.

A second approximation is made as well. This is to truncate the
coulomb interaction at the boundary of a unit cell. This is not
unreasonable for tightly bound excited systems as in the case of

CH4 particularly since the large lattice constant (11.14 au) en-
closes a substantial volume In a unit cell. The dominant conse-
quence of this is to allow the formation of only a single bound

exciton, not an entire Rydberg series below the bands. However
when the coefficients at, are used to evaluate the optical re-
sponse one finds substantial adjustment over the Hartree-Fock
results. These changes are due to the redistribution of
oscillator strength to the bottom of the conduction band due to

the inclusion of electron-hole interaction.

The alternate approach employed is to use a finite molecu-
lar cluster simulation. This is also done using the method of
local orbitals. In this case one partitions the system into the
cluster and the environment. The environment imposes itself on
the cluster by means of a bounding potential. The methods of
doing this are well represented in Je literature, and a general
approach is given by Kunz and Klein which need not be repeated
here. Correlation is imposed using the technique of this sec-

tion and in particular eqs. (20), (2f) and (23) as needed. For
non-degenerate states of course, these reduce to ordinary second

order RSPT. Most cases considered here are not degenerate in
the cluster limit, but for those cases for which degeneracy i a

problem, we have found the full approach to be very powerful.

Ill. Results for Solid CH4

A Gaussian basis set was first developed for the CH4 mole-

cule In free space and then reoptimized for the crystal to allow
accurate description of the energy bands, occupied and virtual.
It was found easy to obtain accurate valence hands, but that the

conduction bands were quite sensitive to the choice of outer or-
bital. The variational principal applies to the solution of the
one particle states in a lCMO formalism, and the selection of

the basis is quite easy. In practice, the conduction bands are

found to he stable against small changes in hasfs set. The va-

lence structure here agrees well wit 2 h't obtained after

corrections to formalism by Piela et al. The conduction
hands are in very poor agreement however. This is due Vo the

far too restrictive basis set employed in the Piela et al. cal-
culation of the virtual bands. In performing this calculation,
some idealizations are needed. A lattice constant of 11.14 au,
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in agreement with Piela et al. is used and the C sub lattice is
fixed as a fcc one as per experiment. The four H's form in
tetrahedra about the C in a unit cell. In the real world, the
tetrahedra do not allign from one cell to another but have
orientational disorder. We, as did Piela et al. fix the H's in
an ordered fcc lattice as well. The current calculation uses
the same geometry as does PielaQL al. The C-H distance is ob-
tained computationally from Beck "-an-d for a lattice constant of
11.14 au, the equilibrium constant, is essentially the same C-H
distance as in the free molecule.

Although the Hartree-Fock band results overestimate any
reasonable bgnd gap, they do reduce the Piela gap by about 13.6
eV however, and one need add correlation along the lines
suggested in Section 11. In performing the correlation correc-
tion computations, the author deviates from the ideals expressed
in the preceding section to the extent that instead of solving
for a set of rather complicated, orthogonal Wannier functions as
implied by the derivations, one approximates these by a set of
local orbitals. In obtairing these the unit on which localiza-
tion occurs is the CH4 molecule is used, and also the appropri-
ate multicenter localization. These orbitals are quite local,
the valence-valence overlaps being 0.03 or less here. First
order overlap corrections are made in the inter molecular terms
for further precision. Due to the procedure adopted, all orders
of overlap in the large intra molecular overlaps are included
exactly. The inclusion of these corrections is essential if one
wishes to achieve quantitative accuracy. In evaluatini! the
perturbation sums, d orbitals on the C atom and p orhitals on
the 11 atoms were added to the hand structure basis set. The
effect of the several contributions to Fqs (32) and (33) are
given In Table 1. There we call the second term on the right
hand sides of Eqs (32) and (33) the relaxation and the sn of
the second and third terms, which come from two electron virtual
excitations, clearly represent correlation terms.

The energy bands for CH4 including correlation are shown in
Figure 1. The density of electron states is also seen in these
figures. As is clear from these figures, the band gap is in-
direct and from rl5v to X5, C .  The direct gap is at the X point
and is X5 ,v to X5 ,C. The correlated indirect gap Is found to be
13.0 eV, and the correlated direct gap is found to be 13.3 eV.

Finally, one computes the position of the exciton levels in
CH4. This is accomplished using the method given in Section II
which has been more fully described in Ref. 9. In this calcu-
lation the coulomb interactive is treated as a one molecule
interaction. The effective electron-hole interaction is here
computed to he 5.4 eV. This is the value of the V. discussed in
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Table 1

Contributions to the ionization potential and electron
affinity of solid CH4  are shown as a function of lattice

parameter. Results are given for the correlation correction and

the relaxation correction. Results are in eV.

a 11.14 au 10.50 au 1 10.00 a.
valence correlation 0.1 eV I 0.2 eV I 0.4 eV
valence relaxation 1.2 eV I 1.2 eV I 1.2 eV
conduction correlation -.7 eV 1 -.8 eV 1 -.9 eV
conduction relaxation I "0.0 eV -0.0 eV I -0.0 eV

Inet gap change -2.0 eV -2.2 eV F-2.5 eV

L FCH4  x 1. K 0 N
Correlated 2.0 2.0
a = 11.14 Ou

L
r

K
3

0.0 K KO. -

L 3  r1 5 'r5 K3 K ,

! Kj

LI r, xI r Kg
----- 0 _____ -2.0k k N(E)arb

!j juf I ih( c'rrulate d t)sind structure of solid LII, aid.4

de oi- t\ af st t :2, in shau In fIor laztIicL' )le J J[Mf 't t -
1 Lit4 aI.
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Ref. 9. Using this value, the exciton is found be at 10.9 eV.
The optical spectrum of Koch and Skibowski does find a
spectral peak at 11.0 eV and this may well be our exciton. A
more quantitative analysis of the optical response is not
possible at this time because the highest valence and lower
conduction bands are of like symmetry and the teLhniques
developed in Ref. 9 and currently available do not permit a cal-
culation of the optical response for the case in which the band
to band transitions are dipole forbidden only the positions.
Therefore, the author reluctantly contents himself with using
only the t conserved joint density of states in compar son with
the measured reflectance spectrum shown in Figure 2.2 As is
clear from this figure, even if one were to include the exciton
at 11.0 eV, a fair degree of discrepancy remains. This is
largely at low energy. This discrepancy is expected. A similar
result is seen in the free CH4 molecule and is due to the
mobility of the H nuclei and their large zero point motion. The
excited CH4 molecule can lower its energy by about 1.6 eV by
relaxing from ideal TD geometry to D2h geometry. Due to large
zero point motion it may be possible to excite from the ground
state TD geometry directly into the relaxed, distorted D h
geometry directly. This certainly appears to be the case in the
free moleCUle and a discussion of this is being prepared by Beck
and Kunz.2 If one assumes the same type of Jahn-Teller distor-
tion is present in the solid, a distorted exciton line would
then appear at about 9.3 eV. This is shown as a dotted line in
Figure I. Since the first experimental peak in solid CH4 lies
at 9.6 eV, this inclusion greatly enhances the comparison of
theory and experiment. In addition the low energy continuous
spectrum between about 12 and 14 eV would be enhanced in
strength by the redistribution of scillator strength due to
exciton formation as was seen in TAF.

Large scale cluster calculation for bulk CH4 (13 molecules
or 65 atoms) and for the CH4 surface (9 molecules or 45 atoms),
including all electrons and correlation via (he pert:rhative
route, have been recently performed by Beck.2 f) These calcu-
lationq are for the excitons alone and tend to confirm the
energy band results qualitatively and quanLitatively. The
specific details of the perturbation treatment for large systems
is well described in the literature.2

IV. Conclusions

The essential conclusions are few and simple. These are
one can construct a satisfactory, self-consistent Hartree-Fock
band structure for molecular solids, including the conduction
hands, if one carefully optimizes the basis set. If one wishes
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to obtain quantitative comparisons with experimen,, the
inclusion of correlation corrections is essential. Furtherr .re,
in describing the ion states in terms of the neutral system
orbitals corrections termed relaxation corrections are needed.
It is seen here, using a Wannier basis, how such arise and may
be included. It is also seen that inclusion of electron-hole
interaction is needed if one is to quantitatively study the
optical spectrum. In addition, due to the light mas of H one
need also be prepared to include Jahn-Teller distortion if one
is to be fully quantitative.

I I I

- "...*
CI') 4. .

o

D).. 2h T ,"

,4o

-. ).

9.0 11.0 13.0 15.0
Energy (eV)

figure 2 The optical joint density of state is shown for solid
Cf'4 along with the ID geometry exciton position and
probable 12\ geometry excitun. The optical reflectivity
of Ref. 24 is also shown
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ABSTRACT

THE ELECTRONIC STRUCTURE OF NITROMETHANE (CH3 NO 2)

David J. Lucas
Department of .etallurgical Engineering

Department of Physics
Michigan Technological University

Houghton, Michigan
1986

Ab initio methods are used to investigate the electronic

structure of the energetic molecule, nitromethane, in the gas

phase as well as in dimer, trimer and small cluster (central

C molecule plus 8 near-neighbors) configurations in the crystal

geometry. Both ground and excited states are investigated,

resulting in the lowest reported energy for the ground state,

confirmation of a low-lying excited-state, and never before

reported work on ground and excited states in configurations of

more than one molecule. The dipole moment of the free molecule

is calculated and compares favorably 'With experiment.

Electronic transition moments and oscillator strengths for the

ground to first excited state reported are calculated and

interpreted. The ordering of the outer orbitals for the free

molecule calculated in this work supports previous semi-empirical

work and conflicts with experimental results, all of which are

subject to difficult interpretation.

An investigation is also carried out on the effect of a



V

single free charge on the carbon-nitrogen bond strength of

the molecule. It is shown that with the free ion situated at a

location where a neighbor molecule would exist in the crystal

configuration, this bond, on the central molecule, may be

strengthened or weakened by nearly 0.2 eV out of a total

calculated bond energy of 2.57 eV.

Work on both the CH 3and NTO 2fragments is also discussed,

the NO 2 results being the.-lowest yet reported energies for the

ground state.

A methodology and approximations are discussed for working

with more than one molecule. It is found that scrubbing of

integrals over atomic functions to a tolerance of 10- 6 yields

excellent results for the dimer when compared to the case

where all integrals are included.

(T*
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Chapter 1

Introduction

The theoretical study of the electronic structure of nitro

compounds (XN02 ) is interesting from both the computational and

practical points of view. These compounds are highly reactive 1

because of the nature of the electronic structure of the NO 2 group

and modifications to the structure that occur for different forms

of X (i.e., BH 2, CH3 , H, NH 2). Nitromethane (CH3U0 2 ) is an

explosive material. We study the electronic nature of

nitromethane with the hope of better understanding the initiation

and sustenance of the detonation process. It is the theoretically

C simplest compound of this type in practical use. Both the NO2

group and CH 3 group are known as radicals because they contain

unpaired electrons which allow them to be reactive.

These compounds are characterized by low-lying excited

electronic states (excitons) . It has been proposed by A.B. Kunz
2

(1983) that excitons play a key role in energy localization

within these compounds and therefore may be fundamentally r !sted

to the detonation process. Kleier and Lipton I indicate that

excitons can cause weakening of the 11-O bonds in the coil-ooun with

the possibility of bond scissionin-.

Work has been done by Zerilli and Toton 3 on shock induced

molecular excitation in solids. Their shock wave study involved

the excitation of low-lying vibrational states in energetic 5o1i2,

and indicate that relaxation time for thermal equilibration of the
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internal modes in the energetic molecule is the controlling factor

In the initiation of reactions. Excitations of vibrational modes

by optical phonons in nitromethane occur at frequencies of abcut

14 -11014 sec The shock wave produces acoustic phonons whici raise

the temperature of the lattice through acoustic vibrational

branches (i.e., excite intermolecular modes in the weakly

Interacting system) while leaving the optical branches

(Intramolecular vibrations) at the initial temperature. The

critical issue is the rate at which acoustic mode energy is

transferred to the intramolecular modes.

Rotational excitations and their pressure dependence have
4-6

also been studied. The relation of these excitations to the

detonation process is not indicated although these modes can be

excited by acoustic phonons and therefore may be intrinsically

related to shock-induced detonation.

Tsai and Trevino7 - 9 have done molecular dynamics studies on

the initiation and propagation of the detonation process in

energetic molecular crystals. These studies involved the

hypothetical heating of one end of a molecular crystal capable of

undergoing exothermic dissociation. The heating leads to

dissociation of molecules and subsequen: propagation of a shock

wave leading to the detonation of the crystal.
10

Shock wave experiments by Guirguin, et.al. investigated the

decomposition of gaseous nitromethane. They indicate several

different pathwiays by which the molecule can decompose followifl

an Initial step of breaking the C-11 bond of several molecules ail-



7 observing the effect of the products (CH3 and NO 2 ) on other

molecules in the gas.

Although, as indicated above, the excited vibrational and

rotational states of nitromethane have been studied, little work

has been done on its low-lying excited electronic states. These

states can be attained by photon absorption in the uv region.

Experimentally, photo-electron (PE) absorption studies were
11

performed on nitromethane in 1960 by Nagakura He observed an

absorption band at 270 nm (4.6 eV) but attributed it to a

nitromethyl anion in the solution. In 1971, PE work 1 2 showed a

band at 220 nm (5.6 eV) due to an excitation in nitromethane.

Rabalais1 3 saw the band at 270 nm and also one at 198 nm (6.3 eV)

C In 1959, McEwen 1 4 performed semi-empirical calculations on

nitromethane, indicating a host of possible transitions at

relatively low energies. Kleier and Lipton performed what they

called "approximate ab initio" calculations using a minimal basis

set and also found several low-lying excited states, but indicate

little confidence in their energies, although they feel the

ordering of the states they found is correct. No work has been

done on nitromethane excitons using extended basis sets and

electron correlation calculations and ri one has investigated the

effects of the crystal environment on excitons when compared to

the molecule in the gaseous phase.

Ab initio studies using extended basis sets and electron

correlation have been done on other smaller energetic crystals.

Particularly noteworthy is the work doi,: by Beck and Kunz 15 on th7
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(methane molecule (CH4) and the solid simulation. They demonstrate
4

the ability to apply cluster techniques (to be discussed later) to

energetic systems and obtain excellent quantitative results.

Ab initio calculations on energetic molecules, while

important in helping to gain insights into the electronic

behavior, are also interesting and challenging from the

computational point of view. The Unrestricted Hartree-Fock method

used in this study is an iterative technique which leads to a

self-consistent field approximation for the molecular system.

When applied to energetic systems such as nitromethane, there is

sometimes a tendency for the method to exhibit erratic behavior

and difficulty in gaining convergence to an appropriate state.

Although it is said to have a relatively simple chemical
10

structure (it being one of the simplest explosives in terms of

chemical composition) it is a rather large and complicated system

when speaking in terms of ab initio calculations. Also, there is

little symmetry in the molecule with which to help reduce the size

of the calculation. The task of investigating a cluster of

nitromethane molecules using ab initio techniques is a formidable

one and in fact, ab initio calculations of this size have rarely

been attempted.

Finally, a comment should be made on the relationship of this

study to energy transport and localization in solids. There are

many mechanisms by which energy transfer can occur. 16 Two well

known mechanisms are resonant energy transfer and the exciton.

Usually, these two phenomena can be distinguished. The first
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involves electromagnetic coupling between molecules with the

possibility of the creation of a phonon to conserve energy. The

second involves the creation of electron-hole pairs which may move

about the lattice. Excitons may experience scattering, radiative

decay, dissociation or trapping, all of which result in energy

transfer within the crystal. 17

This work primarily involves the ab initio study of

nitromethane's electronic structure in both the ground and excited

states. Included in this investigation are studies of both the

CH 3 and NO2 fragments, electronic structure of nitromethane dimers

and trimers oriented in near-neighbor crystal geometries and a

discussion of the procedure and difficulties involved in working

with a cluster of 9 near-neighbor nitromethane molecules in the

crystal configuration. The primary focus in this work is to see

how near-neighbors affect the electronic structure of the molecule

of interest. Also, an investigation into the effects of free

charges at specific lattice locations on the strength of the

carbon-nitrogen bond in the central molecule will be discussed as

will the dipole moment. None of the mechanisms mentioned in the

previous paragraph will be investigated in this work other than a

brief look at the transition probability (oscillator strength)

between the ground and first excited state in the molecule.



Chapter 2

Theoretical Techniques

Hartree-Fock Theory

In order to undertake the formidable task of calculating the

properties of solids, one necessarily must make some

approximations. We are primarily interested in the nature of the

electronic characteristics of materials. One can divide the

problem up into two parts involving the motion of the nuclei (or

ions in a lattice) and the electrons (see Madelung 18 for a more

complete discussion).

The Hamiltonian is, upon neglecting external fields and

relativistic effects:

H = Hel + Hnuc + Hel-nuc (2.1)

where in atomic units (ef=%=m e=l),

n 1 2 1 1
Hel (electron) = -- -+ (2.2)i ~e ij (I- rJl

where n is the number of electrons and r defines the electron

C" coordinates.



H (nuclei) = - F-2 +  i k (2.3)

uc i=1 jk R jk

where the two terms represent the kinetic energy and nucleAr

repulsion energy and N, M i, Z and R represent the number of

nuclei, nuclear mass, charge and position, respectively.

N n Zk
H (electron-nuclei) = - _ (2.4)
el-nuc k=1i i_ 1 k - ria

The decoupling of the Hamiltonian is usually justified by the

19
adiabatic approximation (Born-Oppenheimer method). Due to the

large mass difference between the electrons and nuclei, the nuclei

are slow to respond to changes in electron configurations while

the electrons respond to changes in nuclear positions almost

instantaneously.

To describe the motion of the electrons we can replace

H el_ uc by 10 el-nuc involving only the average positions of the

nuclei. 18

The Schroedinger equation for electron motion is then

(Hel + H'el-nuc)'P(r) = EelP(r) (2.5)

assuming the total wavefunction, T, can be approximated by a

product of nuclear (ep) and electron (qi) wavefunctions 20 and the

nuclei are assumed fixed in position at their mean values. 'P i a
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function of the electron's position and spin.

Hartree-Fock theory (HFT) approximates %V as a finite linear

combination of Slater determinants, i.e.,

= A 1 (2.6)

21 2

where 6i is a Slater determinant. The Slater determinant 22

(SDI is a convenient way to invoke the Pauli Exclusion Principle.

The minimal approximation here is to use only a single SD which

consists of products of spin orbitals, <Vi:

0 (1) ... On(1)

S= -(2.7)
4n! (n) ... 0n~n

where the prefactor is for normalization purposes, n is the number

of electrons, the subscripts refer to electrons and the 0 are

functions of position (r) of the electrons. This determinant

allows for all possible permutations of electrons since each

electron is equally likely to occur in Fny spin orbital due to

their indistinguishability. Also, upon exchanging two electrons,

one interchanges two columns resultirg in a change of sign for 6,

i.e., the wavefunction is antisymmetric with respect to the

!nterchange of two particles. If two electrons have the same

space and spin coordinates, two columns of a are identical and

wave function vanishes. We use the unrestricted variant of HF
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wave function vanishes. We use the unrestricted variant of HF

theqry, where no symmetry restrictions are imposed on j) other than

that they be eigenstates of sz (electron spin)

A single determinant of doubly occupied orbitals is an

appropriate representation of a totally symmetric singlet ground

state of an atom or molecule ('closed shell'). Most molecular

ground states are of this type. 2 3

It can be shown that the expectation value of the energy for

a given Hamiltonian and wave function is an upper bound to the

energy of the first state of corresponding symmetry 23:

< A H A >
E - E (energy of lowest state). (2.8)

Application of the variation method allows one to minimize the

energY yieldi:ng the best approximation to the wavefunction in the

energy sense. In this case, the O's are varied until the minim:um

energy occurs.

We have:

- 0 (2.9)

It can be shown that the spin orbitals, 0., can be assumed to

be orthonormal without loss of generality in what is to follow. 21
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The Hamiltonian is, from above, in atomic units:

n N n1 k 1 1
H 1 2Vk + ----- + 1 -(2.10)

k=12 k=1 1=1 k- rif 2 kl Irk -rI

kx I

This can be written in the abbreviated form,

n n1
H= F + -- Egi (2.11)

where F i is the one electron operators and gij contains the two

electron operators (coulomb and exchange).

The energy may then be written as:

n in
E= 1 <0i11)IFli(I)> +- E (<ei(1)c%(2)Ig 1 2 10i(l)l(2)> -

<0 i(1)¢ (2)Ig121(D ( i (2)>) (2.12)

and <A I 6> = 1.

Use of the enercy variational principle with variation of E with

respect to the 0k and the necessity of invoking Lagrange

multipliers to implement the constraint of orthonormality of the

solutions results in the following:

C.
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C,

fn = E + A d 2.13)
ij d

where fn is the functional to be varied, E is the energy

expression in equation (2.12), A is a Lagrange multiplier andij

the integration is over the electron's spatial coordinates.

The variation

6fn
= (2.14)

results in the following equation:

dT fd'0 (1)(F 0k(1) + (f)J(2) 1 ~(V)4(2)dT 2

y 0J(2 )g1 2 J(1) k(2 )dT 2 + E Akj~i(1)} 0 (2.15)
3

Since the terms within ( } are independent and the variation

60k(1 ) is arbitrary, it follows that:

Flk(l) + Z [j4j( 2 )¢ j (2)dT 2  k(1) (2)g120k(2)dr 20 (1)]

+EA ' (1) 0 (2.16)
kj j

A unitary transformation of Vj can be found whi('

diagonalizes the A,. matrix (i.e., A. )(1) . \  )
13 kk k

The Akk are the energy eigenvalues (Ek) for the Vk orbital.

kk k_
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Finally, one can write the Hartree-Fock equation:

F 40k(l) + (To;(2)(2)Md 1 1) -fj;(2)g (P (2)dT ~(P)J

= Ek 0k(1) (2.17)

This can be written in the simplified form,

scf = Escf
H k (

where Hscf is the self-consistent field Hamiltonian operator. The

set of integro-differential equations is solved iteratively since.

the Hartree-Fock Hamiltonian operator is a function of the

solutions, Ok"

For molecular calculations, one expands the (k in terms of a

set of analytic basis functions. Since it is not possible to use

a mathematically complete set of functions, we can obtain only

approximate solutions to the HF equations. The best (lowest

energy) single determinant wave function constructed within a

finite basis set is the self-consistent field (SCF) wavefunction2
4

Restrictions on symmetry of the spin orbitals and equivalence

of spin up and spin down space lead to solutions of the equations

which are the Restricted Hartree-Fock wavefunctions.
2 4

Unrestricted FT, used for most calculations in this thesis, does

not force these types of requirements, allowing for more

flexibility in the SCF wavefunction and a lower energy. These
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wavefunctions are not eigenfunctions of orbital angular momentum.

The UHF theory is useful in studying excitation energies in

that it is not necessary to force spin up and spin down spaces to

be identical. If one begins with a closed shell ground state and

excites a spin down electron into the spin up space, one may

perform a UHF calculation on this determinant. The resulting

energy and wavefunction are the best single determinant

description of the (new) excited state (which differs in symmetry

from the closed shell ground state). The energy difflerence

between the two states is the excitation energy for the new state

(ASCF method).

The UHF calculations performed in this work utilize the

linear combination'of atomic orbitals (LCAO) approximation in

constructing the spin orbitals.

€X = cij '1 (2.19)

The xij in this work were Gaussian-type orbitals (GTO's) of

the form,

1 m n 2 2)(.0

X = a Ix y z exp(-b r 2 (25) (2.20)

The aj and b. are input parameters in the sequence of codes used

to calcul-ate the integrals over atomic orbitals and the x,y, and

z, raised to their respective powers indicate the type of atomic
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y

orbital (s,p,d etc.).

The X are what are called primitive Gaussians. The

iteration time in the UHF procedure is heavily dependent on the

number of Gaussian functions used. Calculations carried out using

primitive functions can become very time consuming depending on
26

the size of the basis set. Contracted functions consist of

fixed linear combinations of primitives. 2 7 Use of contracted

functions only requires the calculation of the orbital

coefficients of the contracted functions at the SCF stage (the a.
J

can be absorbed into the c.. for a given function). "One can use a

large number of primitives .-ithin a function which enables one to

(take advantage of the analytic properties of Gaussians, while

allowing the orbital to span a reasonable part of configuration

space and yet keep the iteration time down. The disadvantage of

contracted functions is that the integrals over atomic orbitals

become more complicated and time is lost during their calculation.

Usually, howeer, this is a one step calculation since the

integrals are saved and the large gain in SCF computation time

generally outweighs the loss in integrals calculation time.

GTO's have the advantage over Slate -type orbitals (STO's) .n

that integrals involving GTO's are generally much easier to

perform. However, STO's are capable cf describing the orbitals in

a more physically realistic manner and one usually needs

relatively more GTO's than STO's to obtain comparable results.
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Electron Correlation

Electron correlation effects are corrections to independent

electron models or orbital theories of molecular electronic
28

structure. In the Hartree-Fock approximation, the motion of

each electron is solved for in the presence of the average

potential created by the remaining electrons and therefore

neglects instantaneous repulsions between electrons. The

contribution to the total energy due to instantaneous repulsions
29

is called the correlation energy (Ec). This energy is usually

accepted to be the difference between the Hartree-Fock energy and

the exact non-relativistic energy of the system. 26

The method employed in this work to calculate Ec is many-body

perturbation theory (MBPT). (Technically, second order Rayleigh-

Schroedinger perturbation theory is used here. RSPT and MBPT are

identical to 2nd order. The difference lies in higher orders

where'RSPT has size-inconsistent terms which mutually cancel in

the higher orders, resulting in a size-consistent theory. MBPT is

based oni the Linked Diagram Theorem (see Wilson, ref. 28) and

involves only size-consistent terms. R'3PT is an N electron theor/

whereas MBPT is RSPT specialized to spin orbitals.) Although Ec

is usually a small percentage of the total energy of a system, it

is often larger than the energy needed to break many chemical
28

bonds. Since energy differences between states of systems are

of primary importance, and since different states do not generaliy



have the same electronic structural characteristics and perhaps

even different relative atomic geometries (in molecules), the

electron correlation energy of two states is not the same and does

not entirely cancel upon subtraction.
21

We assume the Hamiltonian to be split into two terms, one

which yields known solutions;

H 0 = W. 1 (2.21)
0 j 3

and the other (V) assumed to be small such that the. total

Hamiltonian is given as;

H =H + V (2.22)

The perturbation, V, represents an addition to the energy of the

unperturbed system and is the difference between the exact energy

of the system and the approximate (Hartree-Fock in this case)

energy.

V = H - H0  (2.23)

Note that 11 is the exact non-relativistic Hamiltonian

and H may be any Hamiltonian for which known solutions0

exist.

H is the Hartree-Fock Hamiltonian. The zeroth order enorgy
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Is the Hartree-Fock energy:

EH = Wj H 0 >  (2.24)

The 1st order correction is the expectation value of the

perturbation for the unperturbed state;

E V >  (2.25)

and

E + E = EHF (2.26)

However, the second order correction can be shown to require the

wavefunction corrected to first order;

E ( i > .. (2.27)

where.4 (  is the first order wavefunction.

In principle, one could solve the equation

(H0 + V) T = E 1 (2.28)

or equivalently,

(H - W) T = (E - V - W) T (2.29)

to get T by using the inverse operator (H. - J)- . However, the

possibility exists that this operator could be singular. Therefore
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we need to project out of T the part of the wavefunction

proportional to '; (H 0 . = W.'. ) so that singularities will not

occur. The projection operator (1-P) defined for an arbitrary

function (F) as

(1-P) F = F - F>: (2.30)

does this.

It can be shown that P commutes with H Then equation 2.29

becomes;

(H - W. )(1-PJ). = (l-P.)(E. - V - W ),T (2.31)

assuming no degeneracies. Invoking intermediate normalization

>=1) and using the fact that P. T. = ., equation (2.31) can

be solved for 'i' (an expansion of the inverse of Ti.'s prefactor is

also necessary) resulting in the following expression for T.;

j ()(-P)(Ej-Wj-V) +
0 J

(1-P )(E W V)-(- _ -; )(1-P )(E W -V ,T(HoW )-) Ej- j-V IH :J

+ higher order terms (2.32)

..
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Note that care is taken when expanding to preserve the proper

order of the operators. Simplification of equation 2.32 is

possible since E. and W. can be factored through to yield3 .1

expressions such as (I-Pj) . which have been shown to be zero

above. To first order in V including T (0) (= j we have;

= c? (o_.) (1-P.)v'. (2.33)
3 j (H 0- W

This' is the corrected wavfunction necessary to calculate the

second order correction to the energy.

From equation 5 we have;C
E (2)= <0j . M> = -<<D I. HoJ)( i V'D> (2.34)

-I

Both operators (Ho-Wj) and (I-P.) can be shown to be hermitian.

Also, it is useful to introduce the identity element;

k > 1)k k (2.35)
k

where the Ik is a complete set of functions.

E (2) = -<4 IVv ><D I------ (1-P )V!¢ > (2.36)
k k k (H -. )ko03

For k=j, (1-P )' =0 as shown above.

For kzj, (1-P )¢k='kj k
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Using the hermiticity and commutivitiy of (1-P.) and

(Ho-W.)- We have
0J

kxjo0

2= -~ < VV)k>< (2.37)
k j k k j vj J

Using a more compact notation we write;
V V1.

(2)_ + jk _ 2 3
E - --- (2.3B)

k;ej 0-q )

to second order in the perturbation, V.

If 0 is the total zeroth order wave function (Hartree-Fock

in this case), the total correlation energy is then;

V ok Vko
SW00 +V00 + (W -W(.9

E = Woo + V°° kgj W-k) (2.39)

to second order in V.

It can be shown that;

<AkOVI Ak> = 2- E {<<Vi(1) j (2)1 -1-Oill)1V i(2) >

itjeA k 121

- <¢ (1)¢ (2)1! -l p ¢j(1)¢ (2)>}
r 1 2  t

J j.. .. (2.40)
i j

where A k is a Slater determinant whose elements are orthonormal

spin orbitals.
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The second order expression has matrix elements of the form

V <A IVIA > where A represents the Hartree-Fock space. The
ok o .k o

E2 (2) expression contains all possible double excitations due to

Instantaneous repulsions of electron pairs in the HF space to

possible configurations in virtual space (Ak). Since unrestricted

Hartree-Fock is used, it can be shown that single excitations

(matrix elements between two determinants differing by one spin-

orbital) vanish. The only surviving terms occur where Ak differs

from A in two spin orbitals (i,j (HF) go to a,b (virtual)).. Each
0

J ij:ij then is replaced by Jij;ab and the sums must go. over all

occupied pairs (i,j) and all virtual pairs (a,b). Also, the total

energy difference between the HF and virtual space for a given

pair is ei + e - E - eb which replaces the denominator in the

second order expression.

Combining all of the above we have;

2

z (2 - ---- (2.41)i<j a<b (1 3 a b

Bartlett and Purvis 30 showed that 60 to 70 percent of the

total correlation energy and 70 to ao percent of the valance

shell correlation energy in simple molecules could be provided

using contracted HF basis sets augmented by well chosen virtual

functions. A finite basis set of m functions is used in the

C" calculation. There are n occupied solutions and m-n virtual
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solutions to the HF calculation. The summations go from 1 to n

for the occupied space and from n+I to m for the virtual space.

The virtual space created in the UHF calculation is not slitable

for investigating electron correlation effects or excited states.

They represent states of an (n+1) electron system (negative

31ion). That is, they describe state of an electron moving in the

field of the neutral molecule whereas an excited state of the

molecule would have the electron moving in the field of the n-I

other electrons. Therefore the HF virtuals are removed by

contracting over basis functions and the virtual space is rebuilt

and designed to minimize the correlation energy. This is. done by

forcing the functions of the virtual space to spatially overlap

the functions of the HF space by appropriate choice of the

exponent in the virtual GTO's. A good starting point for this
30

exponent is proposed by Beck and Nicolaides. Their expression,

<r> = 2 x 4 ... 2n 1 (2.4?)3x5 ... (211a)1/2

gives the virtual space exponent, a, as a function of the

expectation value of the orbital you wish to overlap. The integer

n is representative of the angular momentum of the virtual orbital

(n=1,2,3, etc. for l=s,p,d etc.).

For atomic calculations, the application of this expression

is straightforward. For e:ample, given the neon atom (is 2s2p6),

possible double excitations are:
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2s2p - VsVp + VpVd + VdVf

For neon, <r> is about I au for the 2s and 2p orbitals.

Application of equation 2.42 would yield a=0.62662 for the VS

exponent and this would be the starting point in the creation of

the Vs correlation space. Exponent optimization would then be

done to find the minimum value cf the correlation energy. The

application of equation 2.. 42 to molecular systems such as

nitromethane is not quite so useful since molecular orbital

construction is based upon combinations of atomic orbitals.

CHowever, one can maximize the overlap to the largest atomic

constituent and use this as a starting point in the creation of

the virtual space.
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C
Counterpoise Method

The counterpoise method (CP) evolved 33 to reduce the'error

in calculating medium range interatomic or intermolecular

potentials. One primary source of error was attributed to basis
34

set superposition. Traditionally, the binding energy of a dimer

was calculated as follows:

1) Calculate the energy of the separate molecules at

infinite separation where each molecule is characterized by its

own basis set.

2) Combine the basis sets and calculate the total energy of

the dimer at the equilibrium intermolecular separation (which may

have to be determined by energy optimization).

3) The difference in energy, E.(dimer)-(E 1 (-) + E2 (-)} gives

the binding energy of the system.

This method, however, does not yield accurate results when

compared to experiment. 3 5 The error results from the fact that

the calculations on separate molecules were not strictly

comparable to that of the dimer. The dimer calculation contains

compensation, using orbital. (basis functions) located on one

center, for the deficiency of the wavefunction in the neighborhood
34

of the second center (and vice versa).

The correct calculation is to allow the presence of the basis
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functions of the second molecule (without its associated nuclear

charge) when calculating the energy of the first molecule and

doing the same for calculations on the second molecule. The

individual calculations are then comparable to the dimer

calculation in that all functions are present all the time as are

their effects on the energy and orbital structure of both

molecules.

The effect of basis set superposition error, while often

times small, is extremely important in work where intermolecular

potentials are small. Kolos and co-workers 36 used' the CP method

effectively in work on the methane dimer. Dacre-s work

indicates that basis set superposition error should be considered

when calculating small correlation effects. The inclusion of this

effect in his work did not tend to overcompensate but resulted in

a more accurate description of the system in which he was working.

The CP method was found to be useful in the work presented in

this thesis under several circumstances. It was an aid when

making comparisons between all-electron versus pseudopotential

calcul'ations for both the CH 3 and NO 2 groups in nitromethane and

also in helping to converge the nitromethane molecule when using

pseudopotentials by using CP Hartree-Fock orbitals as input

guesses for the two pieces.

OW
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Chapter 3

Computational Methods

Calculations on nitromethane were done in two stages:

1) gas phase (free molecule) and 2) molecular groups (dimers and

trimers with work begun on a cluster of 9 molecules).

In order to perform some of the calculations, modifications of

existing Fortran codes was necessary as will be discussed below.

All calculations were done using Michigan Tech University's Center

for Experimental Computation Floating Point System FPS/164 Man in

conjunction with a Digital Equipment Corporation Vax 11/750. The

FPS/164 is an attached processor which uses the VAX as a host for

access purposes. It has provided computational speed-ups by

factors of six to ten times over the VAX depending upon the stage

of the calculations.

Gas phase calculations were done using the Labels and

37
Integrals portions of the POLYATOM sequence of codes as well as

unrestricted Hartree-Fock (UHF) and many-body perturbation theory

(MBPT) codes developed by A.B. Kunz and modified by D.R. Beck.

These codes were adapted for FPS use by students at the Universit

of Illinois. 38 The MBPT code was run in a mode that allowed for

only part of the calculation to be done on the FPS since at that

time it did not have sufficient memory to handle the entire

C calculation. D.R. Beck made additional modifications to this code

to provide for corrections to spin eigenvalues. Dimer and trimer
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calculations were done using the same codes except without

correlation.

Cluster calculations required extensive program modifications

and some code development by the author in view of the

approximations which were used. No correlation calculations were

done due to size and time limitations. A key approximation,

neglect of neighbor-neighbor (n-n) interactions, forced extensive

restructuring of the way in which input files were handled at the

UHF stage. Also, in order to facilitate storage of labels and

integrals, codes had to be written which scrubbed the integrals

while at the same time created small labels flag files which

contained information to help recreate the labels files while

being much easier to store. A cluster calculation used to be

performed by setting up the entire cluster in the labels and

integrals input files, calculate all integrals and then perform

the UHF calculation using the labels and integrals (2 separate

files.). Three hundred and thirty seven basis functions were used

in the preliminary cluster calculations (9 nitromethane

molecules). This would require the computation of about 1.6 X 109

integrals. It took 6 hours to calculat? 8 X 106 integrals on the

FPS, therefore over 200 hours (8.3 days) of cpu would be needed

for the total calculation. It is difficult to estimate the amount

of time per iteration that would be required at the UHF stage.

However, it could be up to 8 days per iteration based on

comparisons of single molecule to dimer calculations.

It is clear that the neglect of n-n interactions was
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C
necessary in order to make calculations at all feasible using

current computing capabilities. Eight separate dimer calculations

were done, a dimer consisting of the central molecule plus one

neighbor. This resulted in eight separate labels and integrals

files. The integrals involving pure central site functions had to

be removed from all but one of the integrals and labels files.

This step was actually done at the labels stage where no label

which involved purely the central site was included in the list.
-6

The integrals also were scrubbed to a 10 tolerance in absolute

value (to be justified later). Once scrubbed, the integrals were

stored on disk since it was imoractical to recalculate them each

time a run was desired (6 hours of cpu per dimer). The labels
(

calculation was relatively inexpensive (about 20 minutes of cpu

per dimer). However, since the integrals had been scrubbed and

since the labels files were larger than the integrals files, (and

therefore requiring a lot of disk space also), it was necessary to

create an intermediate flag file which was much smaller than the

labels file but contained enough information to help recreate the

scrubbed labels file at a later stage. [Note: If the tolerance hil

not been invoked, all that would have been necessary was to

recalculate the labels and use the entire labels file each time.]

Renumbering of the new labels had to be done in order to convert

the eight separate dimer runs into one cluster run. One other

modification had to be done to the potential energy integrals for

the central site. These had to be calculated in the presencu- o:

all the eight neighbors at once and stored in a separate file.
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This file was read whenever the UHF code needed one electron

integrals from the central site.

The block diagrams of figures 3.1 through 3.4 will clarify the

above comments. Figure 3.1 represents the normal sequence of

events in carrying out the UHF procedure. Figures 3.2 through 3.4

show the necessary modifications to this procedure in order to

work on the nitromethane cluster. The UHF code had to be modified

to handle the new file structure.

Neglecting n-n interactions, the total number of two electron

(2e) integrals is appro:ximately 56 X 10 . The tolerance criteria

reduces this number to about 12 X 10 . The storage requirements

for the eight separate integrals files and labels flag files was

about 200,000 blocks of disk out of an 880,000 block disk (475

Mbytes). If the labels themselves had been stored as well, the

requirement would have increased by a factor of 2. The UHF stage

took about 45 minutes per iteration with 337 basis functions and

12 miilion integrals.

Finally it should be mentioned that several other ideas were

explored to help limit the problem size. These included heavy

contractions of neighbor basis functions, neglect of any integrals

involving more than two centers (up to four centers are possible

in the 2 electron integrals) under the assumption that these would

be small, and use of local symmetry operations on Gaussian

primitives within a spin orbital during the calculation of

integrals to reduce the total number of integrals. Integrals code

modifications by D.R. Beck to investigate the latter of these
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ideas indicate that some savings could be made in the total number

of integrals that need to be calculated but that the savings were

not great enough for nitromethane to warrant further investigation

at this time. Also, it was determined that the neighbor molecules

could be described well enough without the necessity of having to

use heavily contracted functions (which increase the calculation

time of integrals). Finally,it was decided that neglect of all n-

n interactions was a more consistent .first order approximation

than the neglect of multicenter integrals.

C,
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LABELS Give list of one and two electron
labels for the entire cluster.

I ELS Calculate all integrals over atoic

NEGRALSbasis functions based an the labes.

UhfF Calculate energy and eigenvectors
of the cluster

Figure 3.1 Block diagram of the normal procedure.

AP1LAS Calculate labels for diiner I (DI). A dirner
APlOLAB consists of the central molecule + one

neicihbor.

ADF1OPLY Calculate integrals for D1.

Scrub and save the integrals file (POI)
INTFLAG and create the labels flag file (LOI)

I- Remove any pure central one electron
I_TREAD labels and integrals from PO.

AP10LAB ICalculate the one electron labels
L for the central molecule only.

Calculate the one electron integrals for
ADFIO_L _ the central site in the presence of the

charge of all the neinhbors. Note, the
one electron la bels are stored on and read
from the integrals tane at the UHF stage.
The one electron labels need not be saved.

Figure 3.2 Preparation of special labels and
integrals files for Dimer 1.

IL



32

Calculate dimer labels, but do not add to
the one or two electron lists any labels
which involve the central site exclusively.

RECELAB These labels contain pure neiahbor one
and two electron and central-neighbor one
and two electron.

ICalculate integrals for D2 through DS, 7
seParate files each of labels and integrals.

Scrub and save each integrals file
• t_ (POI through PO8) and create and save

_INTFLAG ! labels flag files (LOl throught LOS).
N __ote: Thie labels files are used e%:clusivelv
at the hi[F stage for two electron integrals.

Figure 3.3 Preparation of integrals files and labels flag
files for the other 7 dimers of the cluster.

DI D2-D8
P10AB 1 Recalculate all the RECELAB

labels for all dimers

Use labels files andLABCRE flag files t create LABCRE
new labels files rep-

Li.DAT resenting the scrubbed L2.DAT L8.DAT
integrals. 2

Copy _,l.i , -r files
into the arra '):(Ccessor,

P01 - P08 a -d PO

Run sneciri ,:- ' ccde

Figure 3.4 Procedure for running the cluster with
the special file structure.
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The codes INTFLAG, LABCRE and INTREAD were created by the author.

RECELAB is a modification of the existing labels code as is

APIOLAB. NIAUHF is a modification of the existing Hartree-Fock

code. The only change required for the integrals code was'to

redimerision it to handle a single dimer of 92 functions. Table3.1

is a summary of the files used and their contents when running the

modified system of codes.

Table 3.1'

Files and Contents When Using Special Codes

pcle pc2e pnle pn2e c-nle "c-n2e

X X X X X

p=pure
c=central
n=neighbor
le=one electron
2e=two electron
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Chapter 4

Results for the Nitromethane Monomer

Gas phase calculations for nitromethane were performed using

the geometry determined by Cox and Waring. 3 9 Figure 4.1 is a

schematic diagram of the molecule. The only symmetry operations

that can be used to reduce the nuimiber of integrals is:

1.) Reflection in the x-y plane (applies to the entire

molecule.

2.) Reflection in the x-z plane (applies to the C-NO2.

group).

3.) Two-fold rotation about the x axis (C-NO2 group).

4.) Three-fold rotation about the x axis (CH3 group).

The system has a total of 32 electrons (16 spin up, 16 spin

down for the ground state).

Basis Sets

This section will briefly describe the basis sets used in all

the calculations performed on the molecule.

Initially a Dunning 40 (3s.2p), (7,'1,1/4,1) contraction of

Huzinaga's 41 (9u,5p) primitive set for the oxygens, nitrogen an'!

carbon with Dunnings (2s), (4,1) contraction of Iuzinaga's 4s set
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STRUCTURE OF NITROMETHANE.

CH3NO 2

01

yl

Hi 1.224 A'HI / 21

.2

I .

C- 1.489 A 125.30

107.20

1.088A~ 1.224R

02

Ref. Cox and Waring: J. Chem. Soc. Far. Trans. 68, 1060: 1972

Figure 4.1
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K
was used for the hydrogens (The notation (7,1,1/4,1) indicates the

3S functions consisted of 7,1 and I primitive Gaussians, the 2p

functions of 4 and I primitives, etc.). Also, s bond functions

were placed midway between atoms on the six main bonds (C-N, N-01,

N-02, C-HI, C-H2, C-H3). For various reasons, this set evolved to

57 functions (adding p bond functions), 81 functions (adding d

correlation functions on each atom except the hydrogens) and 84

functions (upon uncontracting the s functions on 01, 02 and N

{(7,.1,1) - (6,1,1,1)). Some experimentation was done on each of

these basis sets, including exponent optimization. Appendix C

contains listings of the basis sets used In calculations

throughout this work.

A comment concerning the usefulness of exponent optimization

Is in order, The basis sets used in the molecular calculations

are optimized for the individual atoms in the system. However,

this does not mean that these functions, when brought together to

form a molecule, will be energy optimized. It is sometimes useful

to vary some of the more diffuse exponents in the molecule on an

individual basis to see if a lower energy results. An example of

this occurs in the calculation of a low-lying excited state of

nitromethane (to be discussed in more detail later). Figure 4.2

shows how variation of the z exponents on the oxygen and nitrogen

atoms on an individual basis cause the energy to drop somewhat.

For the oxygen z functions, the minimum energy did occur at the

original value of the exponent (Energy= -243.5876 11y). However,
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OPTIMIZATION OF THE =Y0ONENTS ON THE OXYGENAND NITROGEN Z FUNCTIONS

(EXCITED STATE)

not converged not converged

-243.585211

.065 eV\
ENERGY I(hy) I.

.5876

.I .2 .3

OXYGEN Z EXPONENT (ORIGINALLY 0.2137)

NOTE: THE MINL'vIUtm ENERGY OCCURS AT THE ORIGINAL VALUE

-243.j827

ENERGY
(hy .•-876 N 4

.5884

4 .16 .18 .19
NITROGEN Z EXPONETNT (ORIGIlOALLY 0.1654)

NOTE: THE MINIMUM. ENERGY OCCURS AT Z=0.18

Figure 4.2

°.-
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an additional 0.0008 Hy (0.022 eV) at the HF stage was acquired by

changing the z exponent of nitrogen froni 0.1654 to 0.1800, which

appeared to yield a minimum. In this example, the gain is small,

but this may not always be the case. Ditchfield, Hehre and Pople

42 have done work in basis set optimization for both atoms and

molecules. Their work involved the variation of both the

coefficients and exponents in minimal basis sets whose functions

consisted of sums of Gausssian type functions (GTOs).

As stated earlier, GTOs are generally easier to work with

43 44 45
than STOs. Others (Stewart , Clark and Miller ,Adams and

Hillier 46 and co-workers) have done some work on Gaussian

approximations to STOs using various fitting schemes resulting in

a mixture of fair to poor results. Ditchfield's work indicates

that a few well-chosen GTO's can yield very good results.

Ground State Characteristics of the CH3 NO 2 Monomer

A basis set of 81 functions was used to study the ground

state (gs) of the monomer. This set evolved from the 48 function

set derived fror! Dunning's 40 basis set!. It is interesting to

see how the energy varied as more basis functions were added to

the set. Table 4.1 compares the gs energy, including electron

correlation effects (2nd order 14BPT) for 48, 57 and 81 function

sets which were previously described. At the HF stage there was a

large decrease in energy of about 0.058 Hy (- 1.58 eV) from 48 to
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57 functions and an additional decrease of 0.025 Hy (- 0.68 eV)

upon going to 81 functions. This demonstrates the importance of

the p bond functions and diffuse d functions in acquiring the

minimal energy state. The d functions, which were added as

polarization functions helped lower the energy considerably at the

HF stage. This shows the importance of polarization functions in

properly describing systems in which atoms are brought together to

form molecules. There was also a large lowering in energy due to

electron correlation. From 48 to 57 functions a gain of -0.081 Hy

(2.18 eV) was made while the 81 function set picked up an

additional 0.089 Tly (2.45 eV). It is quite clear that the p bonds

and diffuse atom-centered d's are extremely important as there are

substantial energy gains at both the HF and MBPT levels when they

are added.

Table 4.2 shows previous work done on the monomer gs. It

should be noted that the 57 function set used in this work is well

below, the energy reported by anyone else at the HF stage. Both

Murrell and Murdoch use the same geometry as in this work.

However, Mezey's work involved geometry optimization to his basis

set, resulting in some slight differences in bond lengths and

angles. No attempt was made here to optimize the gs geometry.
60

Kaufman's work utilizes the crystal geometry of Trevino

which differs slightly from thAt of the free molecule. Her work

consisted of varying the C-11 bond length distance and involved

,calculations at 4 different stages of accuracy; SCF, CI,



40

Table 4.1

Energ (y) Comparison Between Basis Sets

Basis Functions 48 57 81

Energy (HF) -243.640710 -243.698453 -243.723297

Correlation (MBPT) -0.429168 -0.509799 -0.598611

Total Energy -244.069878 -244.208252 -244.321908

Spin (S) 0.412 0.338 0.345

Table 4.2

Comparison of Ground State Energies: Nitromethane Monomer

Reference Energy (hy) Method

Murrell (47) -243.2590 SCF-MO, DZ nocor

Mezey (48) -243.2630 STO w/4.31 EGS,nocor

Murdoch (49) -243.2721 SCF-MO/4.31 EGS,nocor

Kaufman (50) -243.6505 CASSCF

Kaufman (50) -243.5903 SCF, 49 con. GT fns

Kaufman (50) -243.8135 MRD-CI, 4449 SCs

Kaufman (50) -243.8749 Ext. CI

Kaufman (50) -243.8962 Full CI estimate

This work -243.7233 SCF-MO,8lfns,15!GPs

This work -244.3219 SCF+14BPT 81/151

SCF=self consistent field, DZ=double zeta, nocor=no correlation,
STO=Slater type orbit;2s, EGS=axtended G3ussian set,
CASSCF=complete active space SCF, con.=.contracted, GT=Gaussion
type, fns=functions, MRD-CI=multireference determinant
configuration interaction, SCs=selected configurations, Ext.
CI=extrapolited configuration interaction, GPs=Gaussian
primitives. Kaufman's values calculated at equilibrium C-N
distance (2.8 au).
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extrapolated CI and a full Cl estimate. The extrapolated CI

calculation is an approximate way ir) which to add in the effects

of other configurations. She also shows work using Complete

Active Space SCF (CASSCF) and was interested in determining the

configurations necessary to yield accurate descriptions of the

system along the decomposition pathway of the C-N bond.

It is interesting to note that the energy shown by this

author (-244.321915 Hy SCF+ E3PT) is about 0.426 Hy below Kaufman's

'full CI' estimate. At firjst glance this is rather startling in

that full CI is supposed to account for all possible excitations

and the total energy of the system. Several comments are in order

C here. The correlation energy for CH 3 , as given by Pople is
64

-0.248 au. A CI calculation done by Schaefer using a small

basis set gives a correlation energy for NO2 as -0.357 au. When

accounting for the CH 3 NO 2 bond energy, the total correlation

energy for the system is at least -0.7 au. Neither Kaufman's or

this work has reached that value although the correlation energy

reported here (-0.598611 au) is quite a bit more than that

reported by Kaufman. It should also be noted that Kaufman also

used a much sme-ler basis set (55 functions) than used in this

work. It is unlikely that the calculated second order correction

in this work has overshot the true value. Added configurations

(MCHF) would have the effect of lower. ng this author's HF energy.

Kaufman tries to account for the multiconfiguration nature of tl,2

system whereas this work does not. However, the SCF value
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reported here is above the full CI estimate made in Kaufman's work

(this is reasonable). Also, CI is not a size consistent theory.

The Davidson equation used by Kaufman is an approximate correction
52

for size consistency (see Paldus ) whereas MBPT is already a

size consistent theory. The second order MBPT correction is

complete.

A problem does arise in the calculation of the spin of the

gs. Nitromethane has 32 electrons and is a closed shell molecular

gs (S = 0 where S is the spin). Spin calculations at the flF. stage

yield values on the order of 0.35. An attempt was made to

determine corrections to spin values at the ',,BPT stage. D.R. Beck

modified the IMBPT code to calculate spin corrections using the

corrected first order wave function. Table 4.3 shows that these

53
corrections were small. Indications in other work (Kauffman

54 *1Marynick and Kleier ) are that a. better description of the

nitromethane system is one of mixed configurations, requiring

multi-configurational Hartree-Fock techniques. No attempt was

made here to carry out MCHIF calculations. A method proposed by

A.B. Kunz indicates that spin purification using projection

operators may liuwer the energy of the gs by up to 1.0 eV.

A restricted Hartree-Fock calculation was performed using the

output of the 84 function TJ1F run as input. This run resulted in

an RHF energy of -243.715959 (0.0072 Hy or 0.196 eV above the UhF

value), spin = 0 (as expected) and orbital composition very

similar to the UHF run. Furthermore, the output of this RHF run
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was input as a UHF run. The result was a spln=O UHF state at the

same energy as in the RI[F run, i.e., 0.196 eV above the original

UHF gs. Table 4.4 compares the 16 occupied spin up orbital

energies and general characteristics of these runs. A brief word

on notation is in order. Nitromethane has 2 oxygen atoms (denoted

01 and 02, see Figure 4.1), 1 nitrogen atom (N), 1 carbon atom (C)

and 3 hydrogen atoms (HI, H2 and H3). OIS refers to the s type

orbital on oxygen 1, etc. The orbitals labelled 'Z' are p

function orbitals with lobes in the z direction as referred to the

schematic diagram ot the molecule (Figure 4.1). It should be

noted that none of the point group or local symmetry operations

transform the z functions into x or y functions. Therefore, only

x-y mixing with orbitals will occur, the z orbitals being separate

(HIS and H2S may also occur within the z orbitals since these

transform in the same way as the z functions). There are 3 z-type

occupied orbitals. The orbitals which/are unlabelled as to type

consist of mixtures of p or s functions on different sites, or

combinations of p+s functions, attributable to the presence of a

dipole moment within the molecule.

By studying Table 4.4 it is very defficult to determine what

characteristics cause the R}[F and UHF results to be so different

In overall energy and spin and particularly why the UHF run with

RHF input didn't converge to the lowest energy at the UHF stage.

The general characteristics of all three runs are very similar.
Table 4.5 compares orbital energy differences between the
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Table 4.3

MBPT Corrections to S2

48 Basis 57 Basis

UHF S 2 0.603 0.452

MBPT Correction -0.021 0.006

S2 Total 0.582 0.458

Spin (S) 0.412 0.338

SS 2 = S(S+1)

Table 4.4

Orbital C-ci.ariscns, Nitromethane N'onomer, UNF vs RUF

Ground State Energies Ionverged to 106

All Energies in hartrees

Orb. 84 fn RHF 81 fn UHF 84 fn UHF 84 fn UFIF-RHF
E=-243.71596 E=-243.72329 E=-243.72316 E=-243.71596

Spin =0 Spin=0.35 Spin=0.35 Spin=O

1 -20.6128 Ols -20.6302 Ols -20.6324 Ols -20.6123 02s
2 -20.6092 02 -20.60GI 02s -20.6084 02s -20.6093 Ols
3 4 -15.8655 Ns -15.8055 Ns -15.8109 rs -15.8656 Ns
4 -11.3215 Cs -11.3075 Cs -11.3084 Cs -11.3216 Cs
5 -1.6083 -1.6015 -1.6016 -1.6083
6 -1.4016 -1.3985 -1.3986 -1.4016
7 -1.1053 -1.0877 -1.0878 -1.1053
8 -0.8681 -0.8656 -0.8654 -0.8681
9 -0.7538 -0.7453 -0.7485 -0.7538

10 -0.7323 Z -0.7465 Z -0.7464 Z -0.7383 Z
11 -0.7330 -0.7290 -0.7237 -0.7330
12 -0.6260 -0.6170 -0.6172 -0.6260
13 -0.6066 Z -0.6093 Z -0.6093 Z -0.6066 Z
14 -0.4954 -0.5121 -0.5123 -0.4955
15 -0.4941 -0.4890 -0.4891 -0.4042
16 -0.4536 Z -0.4631 Z -0.4634 Z -0.4536 Z
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C

original UHF run, the RIIP run and the second UHF run (UHF1 refers

to the original run, R1-FI refers to 'the original RHF run and UHF2

to the second UHF run). This table indicates that the RHBFf and

UHF2 runs are almost identical in orbital energy. Also, 11 of the

16 orbitals in these two runs are lower in energy than their

counterparts in U}IFI. All but orbital 3 (1S) are within about

0.5eV of their counterparts. US is quite different in energy

(1.49 eV). A comparison of atomic orbital (ao) coefficients in

molecular orbital (MO) 3 "between RHFI and UUF2 shows them to' be

identical to 5 decimal places (as is to be expected). Comparison

of this MO between TJHFl and UJHF2 shows all 84 coefficients to be

Cidentical to at least 3 decimal places. The largest coefficients

are those belonging to NS. Table 4.6 compares the major

coefficients in UHFl and UHF2 for MO 3. The coefficients other

than 33 and 34 are so small they are essentially negligible.

Again, it is difficult to determine where the differences in these

two runs occur.

A comparison of the z orbitals (10,13 and 16) reveals som

interesting features. Table 4.5 shows energy differences of -0.22

eV, -0.07 eV ana -0.27 eV for each of these (UHF-UIIF2). Table

4.7 shows all major contributing coefficients to these 3 orbitals.

MO 10 is a reasonably well matched orbital between the twu.

However, there are some substantial differences in orbital make-up

for MO 13 and MO 16, particularly in the 02Z, 1:Z and CZ

contributions. MO 13 for UHFI has much less 02Z and NZ character
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Table 4.5

Orbital Energy Diff(erences, UFF vs RHF, 84 Functions

Orbital AE(UHFI-RIIFI) hy, (eV) AE(UHFI-UHF2) hy, (eV)

1 02s -0.0196 -0.53 -0.0197 -0.542

2 Ols 0.0008 0.022 0.0009 0.02
3 Ns 0.0546 1.49 0.0547 1.49
4 Cs 0.0131 0.36 0.0132 0.36

5 0.0067 0.i8 0.0067 0.18
6 0.0030 0.080 0.0030 0 08

7 0.0175 0.48 0.0175 0.48

8 0.0027 0.07 0.0027 0.07

9 0.0053 0.140 0.0053 0.14

10 Z -0.0081 -0.27 -0.0081 -0.27

11 0.0043 0.12 0.0043 0.12

12' 0.0086 0.24 0.0088 0.24

13 Z -0.0027 -0.07 -0.0027 -0.07

14 -0.0169 -0.46 -0.0168 -0.45

15 0.0050 0.14 0.0051 0.14

16 Z -0.0098 -0.27 -0.0098 -0.27

Table 4.6

Nitromethane M03: UHFI vs UHF2 Coefficients

Coeff. UHFI UHF2 Type

33 0.593736 0.593838 Ns

34 0.445983 0.446088 Ns
35 0.001786 0.001039 Ns
36 0.000895 0.000753 Ns
44 0.000081 0.000294 Nd
50 0.000968 0.000763 Cs
52 0.000527 0.000422 Cx
67 0.000318 0.000:'4 BNOlx
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jC
Table 4.7

Z-TVpe 14O Coefficientsi UHF1 vs UHF2, 84 Functions.

MO 10 MO 13 MO 16
Coeff # Type UHF1 UHF2 UHF1 UHF2 UHF1 UHF2

17 Olz -0.451 -0.278 0.344 0.194 0.489 0.512

18 Olz -0.154 -0.098 0.147 0.081 0.282 0.291

19 02z -0.162 -0.275 0.024 0.207 -0.377 -0.502

20 02z -0.058 -0.096 0.012 0.092 -0.209 -0.291

41 Nz -0.424 -0;439 0.073 0.207 -0.369 -0.001

42 Nz -0.133 -0.143 0.028 0.086 -0.197 0.013

56 Cz -0.195 -0.247 -0.467 -0.450 0.112 -0.012

57 Cz -0.031 -0.042 -0.117 -0.118 -0.003 -0.062

76 Hls 0.095 0.122 0.272 0.273 -0.093 0.003

77 His 0.021 0.028 0.082 0.085 -0.089 -0.052

78 H2s -0.095 -0.122 -0.272 -0.273 0.092 -0.003

79 H2s -0.021 -0.028 -0.082 -0.085 0.089 0.052

82' BCHls 0.006 0.009 0,013 0.019. -0.006 0.001

83 BCH2s -0.006 -0.009 -0.018 -0.019 0.006 -0.001

t. rmaaa~HHu
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where MO i6 for UHF1 has much more NZ and CZ character. These

outer orbitals will be discussed in more detail in the next

section.

From the energy variational viewpoint, UHFI is the best

ground state since its energy is lower the URF2 by 0.2 eV. It has

not been determined in this study ifthe UHF2 result is actually

an excited state of this system. However, since UHF functions are

supposed to be spin eigenfunctions and since this is a closed

shell molecular system, TJUF2 is a more accurate description of the

system from the energy/spin viewpoint if it truly .i the ground

state. In any event, the spin differences must be tied up in the

difference in character of these outer orbitals. It should be

noted that the RHF value of -243.715959 (with correct spin) is

also lower than any previously reported UHF or RUF value.

Outer Orbital Characteristics

There has been some discrepancy on the ordering of the outer

orbitals of nitromethane. Experimental work (photoelectron
5 56

spectroscopy (P7'S)) done by Kobayashi (1977), Dewar and
11

Rabalais (1972) indicate that the outermost occupied NO is a

bonding a-type orbital of aI symmetry while the second orbital is

an anti-bonding n-type orbital of a2 symmetry (see Appendix B for

a brief discussion of these symmetry and bond types). The n

orbitals are what were referred to as the z orbitals which are
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perpendicular to the x-y plane of the molecule. However,
58

Fujikawa (1974) indicates these two are reversed. Orbital

assignments in both Fujikawa's and Kobayashi's work were initially

determined using CNDO methods (Complete Neglect of Differential

Overlap) and both indicated that the r anti-bonding orbital was

the least bound. Kobayashi's mistrust of CHDO methods caused him

to reverse the assignment based on experimental results of PES on

nitrobenzene. Fujikawa (while comparing ultraviolet arid x-ray

spectra of nitromethane) did not reverse the assignment but

commented that these bands are superimposed on one another in the

x-ray spectrum, leaving one to question his assignment of these

orbitals. Rabalais also reassigned the top orbitals (originally

based on INDO calculations) and made the a orbital outermost.

Semi-empirical work done by McEwan in 1959 also assigns the Tr

orbital as outermost with a statement indicating the difficulty in

ordering such closely spaced orbitals. Work done by Murrel 1 47 and

co-workers in 1975 suggest that the Ti,o ordering is correct based

on the small energy difference between the aI (T) and a lower-

lying orbital of b2 symmetry. The a1 , a2, b2 ordering suggested by

Kobayashi and Rabalais requires a 3.4 eV difference in energy

between the aI and b2 orbitals based on their band energies.

Murrel indicates all semi-empirical work done on nitromethane

shows this splitting to be small (nearly degenerate) and therefore

the a2 orbital could not possibly lie between them. They use

Koopman's Theorem and neglect correlation, two approximations
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which could result in errors of level assignment not to mention

59
energy values. Niemeyer also places the TT orbital as the

outermost. He uses CI)O methods also. As questionable as some of

these theoretical methods may be from the accuracy point of view,

work done by this author assigns the order a2 (n), a. (a) for the

two outermost orbitals, in agreement with the semi-empirical work.

At the UHF-MBPT stage, these orbitals are only about 0.7 eV

apart. The orbital b2 lies another 0.63 eV below the aI orbital.

Since the RHF work done by this author on the ground state also

results in the same ordering for these orbitals support is given

to previous theoretical work on the system. However, a

wavefunction which is corrected to first order may really be

necessary to determine the orbital ordering with confidence.

Plots For Ground State M!olecular Orbitals

13, 14, 15, 16

The following pages display molecular orbital wavefunction

amplitude plots for the four outermost 1.1O's of nitromethane. Both

RHF and UHF plots are shown. All diamonds in the diagrams

represent atoms of the molecule not lying in the plot plane. Any

'x' represents an atom of the molecule in the plot plane. All

plots have contours spaced every 0.05 au within the range of tl.O

au for the wavefunction. Solid lines indicate positive regions oi

the wavefunction while dashed lines indicate negative regions.
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UHF MO 13 shows a strongly localized Tr orbital on carbon with

a weaker lobe on nitrogen. RHF MO 1P has a much stronger

contribution at the nitrogen atom. Both are of b symmetry. MO's

14 and 15 are of a I in both the RHF and UHF calculations. There

Is very little difference between the UHF and RHF orbitals in this

case. The orbitals are bonding at the oxygen lobes with strong x-

y character. MO 16 shows the largest discrepancy between the UHF

and RHF runs. UHF shows the T orbitals of a 2 symmetry localized

on the oxygen atoms but it also shows a strong nitrogen

contribution (See Orbital Plot 10) whereas the R11F run shows no

nitrogen contribution (The x-z plot for 16 RHF which would show

the nitrogen contribution is not shown here because it contained

no information, i.e., no localization at all on the nitrogen

atom.). It is probably this orbital at the UHF stage which causes

the spin to be incorrect.
13

Rabalais shows the top three orbitals as having symmetry

a1 , a2 , b2 . Both UHF and RHF runs indicate them to be a2, a1, a1,

i.e., an orbital of b2 symmetry does not show up here. The a2

orbitals are anti-bonding as are the b2 orbitals. Orbitals of a1

symmetry are bonding. The a1 orbitals shown here are similar to

the one shown schematically by Rabalais 13 except he indicates

that the oxygen lobes have less tilt with respect to the x-axis.

Both up and down spin spaces were shown for UHF orbitals 14 and 15

to indicate the orbital symmetry.

The lack of an orbital of b2 symmetry poses a problem in that

• I ] aaeim iia Hi 2
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(13
two experimentalists claim it is there (Rabalais 13 and

Kobayashi 57). However, Fujilzawa 58. merely characterizes these

three outer orbitals as lone-pairs, one out-of-plane and 
two in-

plane. This is essentially what is shown in the orbital plots.
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Orbital Plot 2
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Orbital Plot 3

X-Y Plane
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Orbital Plot 4

X-Y Plane
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Orbital Plot 5

X-Y Plane
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Orbital Plot 6

X-Y Plane
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Orbital Plot 7

X-Y Plane
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Orbital Plot 8

X-Y Plane
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Orbital Plot 9
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Orbital Plot 10
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Orbital Plot 11
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Ionization Potentials

First and second ionization potentials were calculated

through the HF stage using 48, 57, and 81 functions. The 48 and

57 function sets were also correlated. As can be seen in Table

4.8, the results are in reasonable agreement with experiment. The

discrepancy in ordering between experiment and theory is indicated

by the symmetry type of the ionized orbital. The values reported

in this work are closer to the experimental values than those

previously reported. However, the 57 function data is anomalous

ON in that its values appear to be reversed. This may have something

to do with the orbital ordering problem and may be an indication

that the outer orbital is that of a2 symmetry. Also, a more

precise calculation involving relaxation of bond angles and

correlation of these relaxed systems after ionization should

really be done. Although some bond angle and bond length

relaxation work was done by the author on the first ionized state,

it was'not correlated. The indications were that the 0-IJ-0 bond

angle relaxed from the ground state value of 125.30 to about 120c

at the [{F stage. The values listed in Table 4.8 by this author

are for fixed ground state geometries only.

Also shown in Table 4.8 is a comparison of the 48, 57 and 81

function HF resiu]ts. The 81 function set has a tendency to give

the lowest value of the three sets for both ionization potentials.
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Table 4.8

Nitromethane ist and 2nd Ionization Potentials

Reference 1st I.P. (eV) Sym 2nd I.P. (eV) Sym
---------- ------------- - -------------

This work 48 fns 11.16 a 2  11.33 a1

This work 57 fns 11.53 a 2  11.39 a1I

Murrel (47) 10.95 a2  12.39 a1

Murdoch (49) 11.98 13.38

RabIais (13) 11.32 a 11.73 a21 a2

Kobayashi (57) 11.31 a 11.81 a2

Fujikawa (58) 11.50

48 fn HF only 9.51 9.88

57 fn HF only 9.61 10.06

81 fn HF only 9.49 9.76

Fujikawa was unable to resolve these two peaks individually
using x-ray spectroscopy. Rabalais and Kobayashi used Hel ,584 A,
21.22 eV as their ionizing source for photoelectron spectroscc~y
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Excited States

Excited states of nitromethane have not been well studied.

McEwen 6 6 did semi-empirical work and arrived at a list of possible

excitation energies, the lowest-lying state at 3.01 eV
-I * *

representing a transition of a2 - bI (r - n :an electron is

removed from the a2 orbital and excited to an orbital of b1

1
symmetry, both orbitals being n-like). Kleier and Lipton , in

what they term an 'approximate ab initio method', report a lowest

lying excited state of 1.45 eV. They also state that this value

is not expected to be accurate but that the symmetry of the
*

excitation is T - 7T They also state that evidence for the

existence of such a low-lying excited state of this symmetry is

inconclusive; Rabalais insists the lowest lying excited state

is the a - T transition and that the n T transition is at a

higher energy. Again, this goes back to the discrepancy in the

ordering of the outer ground state orbitals. His prediction is

that the n - T excitation lies at about G.27 eV. This author

calculated a co':related low-lying excited state at 3.46 eV using

both the 48 and 57 function basis sets. The excited orbital was

IT-like and of b1 symmetry, indicating a n - w transition. The HF

energy yielded a difference of 1.4 eV with respect to the 48

function ground state, 1.8 eV for the 57 function system, and 1.8

eV for the 84 function system, all values being similar to that
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reported by Kleier. Electron correlation brought the difference

in both the 48 and 57 systems with respect to the correlated

ground states, to 3.46 eV. The 84 function system was not

correlated. Also, the spin for these results was S=1, indicating

convergence to the triplet. Further confirmation of the existence

of this state came from two RHF runs (uncorrelated) using the 57

function and 84 function sets.

50
Very recently, Kaufman did some calculations using CI

methods for several low-lying excited states of nitromethane. (see

Table 4.9). Her lowest state lies at 0.1763 (4.8 eV) above the

ground state, using the full CI estinzate. Her singles+doubles CI

work shows this difference to be 0.2029 Hy (5.52 eV) and her

K extrapolated CI calculation lowers this to 0.1802 Hy (4.9 eV).

The value reported in this work for the lowest state (3.46 eV) is

not in good agreement with her work. It is difficult to determine

the reason for this relatively large discrepancy. One possibility

is that the -xcited state in this work is the triplet whereas it

is assumed Kaufman converged to the singlet in her CI calculation

(the singlet lying above the triplet). Also, there could again be

differences due to the relative sizes of the basis sets used in

her calculation compared to those used in this work. Tht

difference could be related to either the multiconfiguration

character of the system or to the approximations in Kaufman's CI

values. It is unlikely that higher orders of M43T would make

repulsive contributions as large as 1.5 eV, the difference in
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Summary of E:xcited State Results

and Comparison to Other Work
Etot (gs) Etot (exc.) A Energy hy (eV) Spin

*This work 48 -244.0699 -243.9428 0.1271 (3.46) 1.0

*This work 57 -244.2082 -244.0725 0.1277 (3.47) 1.0

**Kaufman -243.8135 -243.6106 0.2029 (5.52)

**Kaufman -243.8749 -243.6947 0.1802 (4.90)

**Kaufman -243.8962 -243.7199 0.1763 (4.79)

M.DR -242.2547 & 0.0390 (1.06)

M.DG -242.3082 && 0.0925 (2.52)

M.DRO -242.2157

M.PDR -242.4234 # 0.0681 (1.85)

M.PDG -242.4712 ## 0.1105 (3.01)

M.PDRO -242.3606

'Etot =EHF + E.BPT

EMBPT -0.429168 (g.s. 48), = -0.509799 (g.s. 57)
= -0.354409 (exc. 48), = -0.449676 (exc. 57)

*Kaufman's work shown at three levels of calculation,

CI, Extrapolated CI and 'Full CI Estimate'.
M.=Marynick ., gs=ground state, D=double zeta,P=polarized,
G=GVB,R=RHF,RO=ROHF &value=M.DRO-M.DR, &&value=M.DRO-M.DG,
#value=M.PDRO-.I.PDR, #Pvalue=I.PDR0-M.PDG

Table 4.9a

Singlet-TrJalet Solittino: Excited State of Nitromethane

* Ener;ies in 11% .!j
E gs E s E t AE s-gs ,IE t-gs AE s-t

57fn -. 690 -. 607 -. 621 .083 (2.3) .069 (1.9) .014 (.38)

84fn -. 716 -. 629 -. 644 .087 (2.4) .073 (2.0) .015 (.40)

57fn,84fn (this work, RHF),
* values shown to be prefixed with 243., i.e., -243.690 for gs 57.
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energy between the excited states of this work and Kaufman's. It

should also be noted that Kaufman's quoted values are the roots

extracted from the diagonalization of her CI matrix. This may not

yield accurate results unless the basis set used was a very good

one.

For 57 functions the open shell singlet lies at 2.26 eV above

the ground state and 0.39 eV above the triplet. The triplet lies

1.87 eV above the ground state. For 84 functions the singlet is

2.37 eV above the ground state and 0.40 eV above the triplett

which is 1.97 eV above the ground state. These results were

uncorrelated. A better estimate of the energy difference between

C, the ground state and excited singlet would be to use the value of

3.46 eV (48 functions + correlation) and add the 0.40 eV singlet-

triplet splitting since the triplet is the state converged to in

this work (to be shown later) and the singlet is assumed to lie

above the triplet. This shows a value of 3.86 eV for this energy

difference. Recent work by Marynick 52 and co-workers using GVB

methods indicates the splitting between the ground state singlet

and the first excited state triplet to lie somewhere between 1.0i"

and 3.01 eV. The large variation in values (see Table 4.9) is a

function of the method used. His best calculation, which gives

the result of 3.01 eV supports the work done by this author (3.47

eV) for the energy difference between the ground state and first

( excited triplet state.

Kleier and Lipton show the lowest lying state to be a
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triplti (1.45 eV above the ground state) followed by a triplet and

singlet (2.54 eV and 2.64 eV) separated by 0.1 eV.

The work done by this author is strong confirmation of the

existence of a low-lying excited state, 3.46 eV above the ground

state with the symmetry of a T - T transition. A summary of the

above discussion is given in Tables 4.9 and 4.9a.

Plots For Excited State t.1olecular Orbitals

14,15,16,17

The following pages show wavefuriction amplitude plots for the

top four spin-up orbitals of nitromethane in its first excited

state. As in the ground state plots, there may be more than one

view of an orbital to see all of its character. Again, the

individual contours are in increments of 0.05 au with Ix' implying

in-plane atoms and diamonds, out-of-plane atoms of the molecule.

t1O 14 has strong carbon character and also oxygen lobes. The

orbital is of b1 symmetry and consists of Tr bonding lobes on the

oxygen. This orbital is similar to 110 13 of the ground state

except that a nitrogen lobe occurred in Chat MO. It appears that

charge was transferred to the oxygeris in going from the ground to

the excited state. MO 15 is of b2 symmetry. It appears to be a

modification of the ground state MO 14. In that orbital a spin-up

electron was primarily centered on one oxygen. In MO 15

(excited), this electron is shared by the two oxygens. MO 16
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(exciteU) is another modification of MO 14 or 140 15 (ground

state). This is of aI symmetry and looks soiewhat more like the

a 1 orbital Rabalais proposes for the outermost ground state

orbital. The oxygen's lobes are aligned more along the x

direction. Three views are shown of the outermost excited state

orbital, MO 17. Plots in the x-z and y-z plane show a large

nitrogen r double lobe. A plot through a plane containing both

oxygens shows them both holding iT lobes also. The orbital

possesses b1 symmetry, and the oxygen lobes are bonding to each

other and non-bonding to the nitrogen lobes.

C

C.naNIII tiI Hl
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Orbital Plot 12
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Orbital Plot 13
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Orbital Plot 14
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Orbital Plot 15

X-Y Plane
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Orbital Plot 16
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Orbital Plot 17
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Orbital Plot 18
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Plots For the Singlet and Triplet Contributions

To the First Excited State of Nitromethane

The first four plots of this section show MO's 15, 16 and 17

for the triplet contribution to the first excited state of

nitromethane. These should be compared with the same orbitals of

the previous section to see that the excited state referred to

there was the triplet state (both sets of orbitals are identical).

The following four plots show the same 3 orbitals for the singlet

contribution. It should be noted that the singlet contains 2

orbitals which are identical to the triplet except in order. That

is, singlet 16 is the same as triplet 15 (b2 symmetry) and singlet

17 is the same as triplet 16 (aI symmetry). Singlet 15 consists

of double lobes on only one oxygen and a lobe on the nitrogen

whereas the triplet 17 orbital is double lobed on both oxygens as

well as the nitrogen (lone-pairs).
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Orbital Plot 19
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Orbital Plot 20
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Orbital Plot 21
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Orbital Plot 22
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Orbital Plot 23
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Orbital Plot 24
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Orbital Plot 25
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Orbital Plot 26
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Dipole Moment

The dipole moment -f nitromethane was calculated to L; 1.45

au (3.696 Debye) using the 57 function set. No effort was made to

determine correlation effects on this value. Current work by
21

Beck on methanol (CII3 CH) indicates that correlation effects on

the dipole moment for that molecule are small. The experimental
61

value is given by Tannenbaum as 3.46 ± 0.2 D. The calculated

result is in good agreement with experiment indicating the charge

distribution within the M!'s of the 57 function set give a

reasonable representation of the nitromethane molecule.

Oscillator Strength

The oscillator strength (f) is a measure of the transition

probability between two states. The f value is given by:

f ab, 2/3 (Eb - Ea)*S<alrlb> 2 (Ref.24, page 102) (4.1)

Where E and E are the energies of the states of interest and theb a
matrix element is referred to as the transition moment.

The calculation of f values is difficult because highly

accurate wavefunctions are necessary to get reasonable agreurient

with experiment. It is even quite difficult to measure f values



89

experimentally in molecular systems. Part of the problem lies in

the fact that the radiation the mole.cule in the solid actually

sees is modified somewhat by the medium through which it travels.

Corrections involving the index of refraction and dielectric

constants of the bulk material are required in order to interpret

results. The inediu'. also has an effect on the molecule of

interest (see Fowler, reference 74, for more details).

Another problem in the calculat'ion of f values is a result of

the'.Born-Oppenheimer approxiiation. The f value is proportional

to the transition moment:

f cc <TrIWI> (4.2)

where 9' is the total (electron + nucleus) wavefunction for the

ground state and 'I represents the excited state. The Born-

Oppenheimer approximation separates nuclear and electronic motion:

<T][rj'> - <T el TnucI EIT el nuc>. (4.3)

The separation of the wavefunctior allows for the approxdiate

calculation of the electronic portion and it is the electronic

part of the transition moment,

Del (R ) = <T elI r el (4.4)
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which is calculated. Schaefer shows that this can vary widely

with internuclear separation. Therefore, for accurate f values,

it is also necessary to calculate vibrational wavefunctions and

their effects on D el; i.e.,

<Tnuc (R) el nuc(R)>. (4.5)

32
Beck and Nicolaides sho-w that the approximation used for

the transition moment (De-1) can vary from 10% to factors of 10 and

that correlated wavefunctions yield much better results. There

are also computational plo of non-orthonormality effects

between ground state and excited state wavefunctions and the

calculation of transition moments. However, these effects have

recently been accounted for by D.R. Beck in the codes used to

calculate f values.

The transition moment portion of f, where 'a' and tbI

reprelsent the RHF ground state and excited state wavefunction.

(Hartree-Fock) discussed previously, was calculated to be 2.8 for

nitromethane. The difference in energy between these states at

the RHF level i s 0.06684 au (1.87 eV). Combining all terms

yields the f value of 0.125 for nitronethane. It should be

emphasized again that this could be off by a factor of up to 10

(more likely to be around a factor of, 2 (Beck 21

The interpretation of this value in terms of classifying the

Sstrength of the transition is a difficult one. In comparing to
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atomic systems, it appears thsit a value of 0.125 may be considered
to represent a moderate transition. "For example, measured f

values for several transitions in nitrogen range from 0.093 to

0.350 (Ref. 24, page 105) where 0.350 would represent a strong

transition. It appears that the transition studied here for

nitromethane is not particularly strong and may, in fact, be very

weak if errors due to wavefunction inaccuracy and the Born-

Oppenheimer approximation are accounted for.

C

C.



92C
CH3 and NO 2 Studies

During the course of investigation of the CH 3NO 2 molecule it

was of some interest to study the CH 3 and NO 2 fragments

individually. In doing so, some investigation into the energy of

these two systems occurred as well as the implementation of the

counterpoise (CP) method to aid in convergence as well as to be

used to compare the two systems with and without pseudopotentials.

Also, the C-N bond energy in the ground state was determined.

Another hope here was that combining the UHF output of the

separate systems into a single UHF input would result in-iiproved

C spin for the nitromethane molecule.

Binding Energy of the CH 3 and NO 2 Fragments

Two different approaches were employed to investigate the

energy associated with the C-N bond (rragmentation into CH3 and

NO 2 groups). First, this energy was calculated for the free

molecule and then it was calculated in the presence of a +I or -1

au charge, sitiAated at the location a neighbor nitrogen or carbon,

atom would have in the crystal. This step was suggested by A.B

Kunz to see what effect ions moving into vacancies in the lattice

would have on the strength of this bond. The CP method was used

for all calculations. It should be recalled that, in this ,

o.. one calculates the energy of a fragment in the presence of the
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functions of the other fragment, these functions being situated at

the location they would hnve in the whole molecule, but without

associated charges. The analogous calculation is done for-the

second fragment. The sum of the energies of these two fragments

subtracted from the energy of the molecule, gives the energy

required to break the bond.

Tables 4.10 and 4.11 summarize these calculations. The first

calculations done, using the 81 funiction set and MBPT, indicated a

value of 82.8 31cal/niole for this bond energy (multiply hy/molecule

by 627.07 to get Kcal/mole). Work done by Corey and Firestone 62

show a number of possible ways in which the molecule may fragment.

C They indicate that irradiation of gaseous or liquid nitromethane

with photons of wavelength 253.7 nm results in C-N bond breakage.

This is equivalent to absorption of 112.8 Kcal/mole. Their work

suggests the molecule first makes a Xransition to an excited state

and then the bond breaks. The value of 82.8 Kcal/mole is not in

good agreement with experiment. A better calculation of ground

state correlation energy may help to bring the calculated value

closer to experir.mient. Also, rotational and vibrational

excitations as well as electronic transitions could be considere3.

Results of the effect of the presence of a single charge near

the molecule are shown in Table 4.11. The motivation behind this

study was the possibility of changing bond strength with'in the

molecule if a nearby lattice site was occupied by a free ion. Th~e

C-N bond was of primary interest. Calculations were performed
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Table 4.10

CH-3 and NO2: HF-MBPT CP Results 81 Function

HF Energy (hy) MBPT Total

CH3  -39.560296 -0.125111 -39.685406

NO 2  -204.016393 -0.488029 -204.504422

CH3N 02  -243.723297 -0.598611 -244.321905

AE (CH3 NO2 - (CI3 + NO2)) = 0.13208 hy/molecule = 82.8 Kcal/mole

Experiment = 112.8 Kcal/nole

Comparison with other work is given in the following section of text.

Table 4.11

Effects of Ion {±la) on C-N Bond Strength: 57 Fns, CrVstal Geoin.

Ch Loc CH 3NO 2  CH3 (CP) NO 2 (CP) Bond Energy ,hy

o -243.6974 -39.5491 -204.0538 -0.0946 (-2.57eV)

-1 -11103N -243.7100 -39.5491 -204.0603+ch -0.1007 (-2.74eV)

+1 -11103N -243.6910 -39.5491 -204.0493+ch -0.0927 (-2.52eV)

-1 -11103C -243.7036 -39.5504+ch -204.0538 -0.0994 (-2.71eV)

+1 -11103C -243.6933 -39.5495+ch -204.0538 -0.0901 (-2.45eV)

-1 C-N -243.7048 -39.5491 -204.0538 -0.1020 (-2.77eV,)

+1 C-N -243.6933 -39.5,491 -204.0538 -0.0905 (-2.46eVI

Ch=charge(au), loc=location of the charge (see Appendix A for
notation), CP=counterpoise, +chl=energy calculated as charge stayed

with fragment, I=perpendicular to the C-N bond length midpoint of
the main molecule, about 8 au towards -A1103.

Coordinates: -11103N=(-1.7028,-0.0854,7.4013)au (x,y,z)
-1l103C=(-2.5!27,-l. TT'03,9.Gglg.)au

I =(-1.3990,-0.8750,8. 5450)au
Note: The main molecule's nitrogen is located at (0,0,0)
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using a single molecule in its crystal geometry and a ±1 au charge

located at a position in the lattice where a nitrogen or carbon

would exist in a nearby molecule. In particular, the main.

molecule used was (000 01) and the charge was placed at the

nitrogen or carbon position in molecule (-Ill 03). See Appendix A

for an explanation of this notation. The charge was also placed

at a position perpendicular to the C-N bond of (000 01) at a

distance and in the direction of (-Ill 03). The bond energy was

defined to be the difference between the energy of the molecule

and the sum of the counterpoised fragments. The additional charge

was assumed to be a part of a fragment (either CH 3 or 02 ) for

C counterpoised runs except in the perpendicular case where the

charge was assumed to separate independently of the other

fragments. The bond energy was determined to be 2.57 eV for the

free molecule (no correlation). A rather large strengthening

occurred by placing the -1 charge at (-Ill 03)N, (-111 03)C and at

the erpendicular location (increases of about 0.2 eV). The +1

charge had a tendency to wea!zen the bond, especially if located at

(-Ill 03)C or at the perpendicular position (by about 0.2 eV). It

should be noted that the distance from the charge locations to t';-

center of the nitromiethane molecule was about 8 au. The effects

of charge rearrangement on the central molecule due to the

presence of a single charge are rather pronounced when considering.

the distance involved.C'



96

C
These calculations indicate that free ions within the crystal

lattice may have a substantial effec.t on the C-11 bond strength of

nitromethane.

CH3 and NO 2

The energy of the Cl!3 group at the UhF and MBPT level was
63

-39.560296 hy which is in.. good a~reement with Pople's exact

value of -39.57268 hy. No effort was made .in this work to improve

upon this value. The spin for this fragment was 0.5, a correct

value for the one unpaired electron in the system.

A bit more work was done on the 2A I ground state of NO2 .

Handy 64 and co-workers, using a (4s,2p,ld) set and the

configuration interaction method (CI) found an energy of -

204.42460 (-204.06816 SCF) where they froze the 5 lowest MO's. A

56 fuhction 3et (4s,2p,ld) was developed in this work, also

freezing the 5 lowest 1O's and using 2nd order .BPT. A total

energy of -204.47778 (-204.083902 SCF) uas calculated, about

0.0532 Hy (1.45 V) below Handy. The s.)in was 0.5, correct for

the single unpaired electron in this system. The geometry used
65

was that given by Bird et.al.

It is interesting to note that upon combining counterpoised

CH3 and NO2 outputs, both of which yield correct spin, the spin at

Cthe UHF level for the entire molecule is still incorrect. This
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Indicates that it may not be possible to get a correct spin for

this system without using more than pne configuration. Kleier and
1

Lipton make reference to this problem in obtaining a ground

state singlet using GVB descriptions where they claim these states

cannot be described at the RHF level. No mention is made of

problems at the UHF level.

Comparison of Pseudopotential to All Electron Fragments-

Since pseudopotentials were to be used in place of core

electrons on neighbor molecules in the calculations involving

larger groups of molecules, it was useful to develop a basis for

the molecule which would be small, use pseudopotentials and still

maintain some semblance of the orbital characteristics obtained

from the 81 function set. It was practical and convenient to work

on the individual fragments (CH3 and NO 2 ) since good spin could be

obtained at the UHF level for both. Eventually, a 35 function set

plus pseudopotentials was developed for the neighbors. A (2s,2p)

set for each of C,1, 01 and 02 (8 functions on each) and a (is)

set for each hydrogen was chosen. Some experimentation had been

done with even smaller sets but it was clear they were not

adequate to properly describe the molecule. Of the 35 functions,

11 were on the CH . group and 24 on the NO2 group.

Table 4.12 shows, for a given set of exponents, the orbital
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energies and major contributors for those Os which exist in both

the CH 81 function, CP set and the CH 11 function set. Of
3

course the total energy of the CP group is much lower since there

are more functions and the core electrons are removed from the

small set. There is about a 0.1 eV difference in orbital

eigenvalues between the CP and all electron cases for CH3 (This is

also true for the NO2 fragment). The CP values are forced lower

in value. Ideally, one would hope the pseudopotentials which

replace the core electrons would have minimal effect on both the

character and eigenvalues of the outer orbitals. This could

indicate a need for work to be done on pseudorotentials which e

correctly describe the inner orbitals of molecules. However, the

table shows reasonable agreement in characteristics between the

two (also in orbital energy). The spin for both cases was 0.5.

The it MO for the 11 function set corresponds to the 2t MO for the

81 function set since core orbitals (it and 1i) are removed from

the s-maller set. Table 4.13 shows the same information for the

NO 2 spin up space fragment. Here, the 4T orbital for the large

set corresponds to the 1t orbital in the small set. The CH- data
3

compares quite "iicely. The No2 data shows some ordering problers,

especially in the 5 miiddle orbitals (3T through 7t). There are

also some discrepancies in the character of at least 2 of these.

Note that 3, 4 and 7 for the small set are very similar to 10, 9

and 8 respectively of the larger set. Orbitals 5 and 6 for the

small set have no clear counterpart in the large set. The spin in
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both cases is correct and the Mulliken populations are very

reasonable. These discrepancies are probably due to the minimal

basis set used. NO 2 is an active fragment which is probably

difficult to describe using a small number of functions.

Nevertheless, since the outer orbitals looked reasonable and the

expense of including more functions on the NO2 group would be

prohibitive, computationally, the small set was deemed acceptable.

Upon ccmbirning the two fragm-,nts basis sets with pseudopotentials,

exponent variation resulted in a UIIF output which, in orbital

character, compared favorably with the 61 function output for

nitromethane. In particular, the orbitals which were purely z-

Cr type were ordered identically to the corresponding z orbitals in

the output of the large set.

C.
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Table 4.12

Orbital Connari on: CH (_P vs CI3 (

MO(CP) MOI(I) Char.(CP) Energy (,hy) Char.(ll) Energy (hy)

2 T 1 t Cs+Cx -0.945 Cs+Cx -0.837

3 r 2 T Cy -0.579 Cz -0.668

4 T 3 T Cz -0.579 Cy -0.668

5 T 4 T Cx -0.387 Cs+Cx -0.494

2 1 1 1 Cs+Cx -0.855 Cs+Cx -0.798

3 1 2 L Cy -0.565 Cy -0.654

4 3 1 Cz -0.565 Cz -0.654

Total Energy -39.56 -6.44
Spin 0.5 0.5

CP=counterpoised 81 function set.
11=11 function set plus pseudopotentials (core electrons removed)

Mulpops CP 11

C 6.3 5.3

HI 0.82 0.58

H2 0.82 0.58

H3 0.82 0.53

BCH1 0.08

BCH2 0.08

BCH3 0.08

Total 9.0 7.0

11 function set has no bond functions.
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Table 4.13

Orbital Comparison _O _ __-2 24) JSpin up only)
-2 JCP) vs NO2 ____

MO(CP) MO(24) Char.(CP) Energy (hy) Char.(24) Energy (hy)

41 it Os,Oy,Ns -1.681 Os,Oy,Ns -1.726

st 2? Os,Ny -1.499 OsNy -1.571

6t 3T Os,Ns -0.970 Ox,UNX -1.130

7t 41 Ny -0.835 Oz,Nz -1.083

8t 5T Os,Ox,Ny -0.802" OxOy -0.887

9:. 6T Oz,NZ -0.766 as, Oz",Oy -0.837

1? 7t Ox -0.596 .OsOy,Uy -0.836

IT 8T Oz -0.528 Oz -0.808

12t 9T OXNx -0.503 Ox,NsNx -0.759

Total Energy -204.083902 -36.619178

Spin 0.51 0.51

Mulpops CP 24

N 6.35 4.64
01 8.15 6.18
02 8.15 6.18
BNO1 0.17
BN02 0.17

Total Charge 22.99 17.0

NO 2 has 23 electron (6 core electrons).

t2



102e
Chapter 5

Nitromethane Dimer Calculations

This section discusses ab initio calculations performed on

dimers of nitromethane oriented in the relative positions they

would have in the crystal configuration. Crystallographic work on

66solid nitromethane was done primarily by Trevino and

associates. Appendi: A describes the general method used to

transform crystallographic coordinates into the coordinates of the

molecules in the crystal. The geometry of a single molecule

within the crystal differs slightly from that of the free

molecule. The primary reason for working on dimers initially was

to:

a) show that convergence could.be obtained for the dimer

system. There is no reported work at all on interactions

of more than one nitrcmethane molecule.

b) develop a basis set that would be manageable and

adaptable for larger groups of molecules.

c) observe the excited state deter.ined in the gas

phase calculation to see what effect (if any) the

presence of one near neighbor might have.

Since the intermolecular system is assumed to be weakly

interacting (see Trevino 67 and Pastine 68), the presence of thL:

near neighbor is not expected to have much effect on the exciton
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of the other molecule in the dimer.

The study of dimers followed a path which would lead up to

the study of larger groups of molecu'les. A minimal cluster of

nitromethane molecules would contain a central molecule surrounded

by 8 near neighbors (see Figure 5.1 and Appendix A for the

geometry involved). One can view this cluster as being comprised

of essentially 8 dimers, the central molecule plus each neighbor.

It was desirable to use a basis set for the dimer which, when

applied to the larger groups would still be reasonably manageable.

An 81 function set on each molecule would certainly not be

feasible from the computational point of View. Therefore it was

decided to use the 57 function basis set for the central site.

C This set yields a good description of the molecule as shown

previously in this thesis. A reduction of this set to 35

functions was done and applied to the neighbors (see the preceding

section). This set evolved after considering many different basis

set contractions. Also, in all calculations involving dimers or

larger groups of molecules, the core electrons on the neighbors

were removed and replaced with pseudopotentials developed by

Topiol 69 (See Appendix C for basis sets and pseudopotential

parameters used in these calculations). Christopher Woodward's 70

extensive tests indicate that the use of pseudopotentials in place

of core electrons give excellent agreement with experiment -hen

Investigating excited states in metallic clusters. The use of

pseudopotentials reduces the number of basis functions required in
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the system since core electrons no longer exist. The argument

here is that only valence electrons are important in determining

the chemical characteristics of the system as core electrons are

bound too tightly to the nucleus. Pseudopotentials represent the

effects of core electrons on outer shells of electrons.

A brief summary of the dimer basis set follows.

1) 57 function set applied to what would be the central

molecule in a cluster (designated CEN). The 57 functions

consist of (3s),[7,2,1] and (2p),t4,1] on each of 01, 02,

N and C, (2s),[4,1] on each hydrogen, and one s and one p

bond function on each of the'bonds N-01, N-02, ',-C and

finally, one s function on each C-H bond. (a total of

57 functions and 127 Gaussian primitives.

2) 35 function set applied to any molecule which would be

a near neighbor in the cluster, designated NEII through

NEI8. This set consists of a (2s),[1,l] and (2p),[ll]

on each of 01, 02, N and C and (1s),[l] on each hydrogen,

with no bond functions for a total of 35 functions and

35 Gaussian primitives. The central molecule and any

near neighbor would constitute a dimer (e.g., CEN-NE11=

dimer I = D1, etc.)

3) Any neighbor in a dimer (or larger group) will also have

cpseudopotentials to replace the core electrons. Since
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a single nitromethane molecule has 32 electrons, an all-

electron dimer would have 64 electrons. Removing the two

is electrons from 01, 02, N.and C (8 electrons all

together) reduces the total number to 56 electrons in a

dimer (32 on CEN and 24 on any NEI).

Figure 5.1 is a schematic diagram of the nitromethane

cluster, the geometry being derived from Trevino's 66 work

(Appendix A). The central molecule (CEN) is shown surrounded by 8

near neighbors. There is essentially no symmetry in this cluster

to aid in reducing the number of integrals required by the UHF

method. Based on the basis sets mentioned above, each dimer has

(7 92 functions (57+35) and 162 primitive Gaussians (127+35). This

results in a total number of two electron integrals equal to

8822323. Initially, a very limited amount of symmetry was invok:cd

for CEN, a coordinate transformation placing the x-axis along the

C-M bond and the NO2 group in the x-y plane (same orientation as

the free molecule--see Figure 4.1). This reduced the total number

of unique integrals to 8317090, not a great reduction. Much later

it was realized that the oxygens don't see quite the same

electrostatic potential and the potential energy integrals

involving them were slightly incorrect. It may be useful to

invoke a symmetry test in the POLYATOM integrals code at the

potential energy stage (VINTS) to catch this problem.

A major gain was made, however, in the realization that a
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Figure 5.1

Schematic diazram of the Nitrc 2tha re Cluster.
The bond len~ths re not to scale. Th frcnt
4 molecules are oriented with the C-N bond in
the front plane (Tne ack 4 have this bond in
the back place). TEe central molecule has a
unique orientation with resc-ct to the other
8 sho.n h . e d stn.e frcm the corner to,
the center of the parallelepipe-d is about 5.9 A.

C The C-N bond ler.;th is about 1.5 A.
Neighbor hydrogens not shown for simplicity.
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great deal of the two electron (2e) integrals were extremely small

(<10 - 6 in absolute value). A tolerance of 10- 6 in absolute value

was placed on the two electron integrals. This resulted in a

reduction for D1 from 8822323 integrals to 2453781. This value

varies with the dimer referred to since none of the 8 dimers are

geometrically equivalent. The FPS164/IAX takes approximately 6

hours to calculate the 8.8 iiillion 2e integrals. This reduces to

about 1.7 hours when they are scrubbed at 10- 6 . Using

counterpoised input data from the 57 and 35 function sets,

relatively rapid convergence occurred for D1. In 37 iterations

the energy converged to -290.562604 Hy for the unscrubbed case.

Again, there was a problem with the spin as a value of S=0.43

wascalculated for an S=O system. The Mulliken populations were

very reasonable (see Table 5.1). The scrubbed integrals yield

convergence in 37 iterations to a value of -290.562599 and spin of

0.43 with reasonable Mulpops. The uhscrubbed case showed an

Iteration time at the UHF stage of 13 minutes/iteration while the

scrubbed case took only 3.8 minutes/iteration. Neither case was

correlated due to the excessive comiputation time that would be

required to do so. It should be noted that the same calculation

performed on tha VAX would take approximately 5 to 6 times lorger.

As noted above, since each dimer was geometrically different, the

scrubbed integrals savings varied, as shown in Table 5.2 (the

total number of unscrubbed integrals is the same for each dimer).

-6Convergence criteria was based on an energy difference of 10
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Table 5.1

Mulliken Populations for Dimer l and Dimer 8

Compared to the Monomer

Center Dl(unscrub) D1(scrub) D8(scrub) Monomer

N (CEN) 6.3482 6.3487 6.3365 6.3675
01 " 8.0965 8.092 8,1022 8.0876
02 " 8.0965 8.0962 8.1056 8.0876
C 5.9775 5.9774 6.0061 5.9794
Hi " 0.8093 0.8093 0.7904 0.7945
H2 0.8285 0.8287 0.8139 0.7906
H3 " 0.8043 0.8043 0.8006 0.7945
BUOI " 0.3150 0.3151 0.3154 0. 3147
BN02 0.3149 0.3150 0.3153 0.3147
BTIC 0.0770 0.0770 0.0771 0.0761
BCHI 0.1305 0.1305 0.1309 0.1309
BCH2 0.1302 0.1302 0.1310 0.1311
BCH3 0.1306 0.1306 0.1306 0.1309
N (NEI) 4.6254 4.6254 4.6214
01 " 6.2519 6.2519 6.2518
02 " 6.2455 6.2455 6.2658
C " 5.3498 5.3498 5.3649
HI I 0.4926 0.4926 0.4933
H2 " 0.4859 0.4859 0.4933
H3 " 0.4899 0.4899 0.4603

C
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Table 5.2

Two Electron Integral Savings Due to 10- 6 Scrubbing

Dimer Total Integrals Total Saved Total Unique

1 8822323 2453781 1999469

2 2483156 2028844

3 2122725 1668423

4 2179175 1724863

5 2217949 1763637

6 " 2164527 1710215

7 2392283 1937971

8 2406099 1951787

Totals 70578584 18419705 14785209

* Unique integrals apply only when symmetry operations are allowed
on CEN. As noted in the te:xt, these operations introduce slight
errors in the potential energy integrals involving the oxygen
functions.

ci
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There is nearly a 4-fold savings in total integrals when scrubbing

Is implemented.

Table 5.1 shows there is little difference between the

monomer and Dl's CEN Mulpops, indicating little charge

rearrangement upon dimerization in this geometry and therefore a

relatively weakly interacting system. Dimer 8 Mulpops are also

shown in Table 5.1. The cxygen and carbon atoms have made slight

gains in charge at the expense of nitrogen and hydrogens. This is

due to the difference in orientation of the two molecules in the

two different dimers.

Table 5.3 is a summary of the dimer characteristics. There

are 28 spin up and 28 spin down electrons, 8 removed by

C" pseudopotentials. The molecular orbitals showed minor CEN-NEI

interactions. They separated into primarily CEN or NEI centered

MOs. Of course, there was adequate contribution within any

orbital from both molecules to indcii'te they were weakly

inter.acting. Table 5.3 also sho;.'s the energy and character of the

top 5 orbitals of the dimer. The z-type orbitals remain with the

centraJl molecule but not with the neighbor since the coordinate

system was oriented to favor the central site in this respect.

The relatively small error induced by the use of symmetry on the

central site did not warrant recalculation of this systems energy.

The largest error in any VINTS integral was 1.63 eV. While this

may seem like a large number, it must be remembered that the

symmetry problem involved only the oxygen atomic orbitals and of
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Table 5.3

Results for Dimer I Ground State

Molecules (000 01Y and (-Ill 03)

92 Functions, 56 Electrons and Pseudopotentials

Unscrubbed Integrals Scrubbed Integrals

Total integrals 8822323 2453781

Energy (by) -290.562404 -290.562599

-6 6
Convergence 0.65 X 10. 0.66 X 10-

Iterations 37 37

Minutes/Itr. 13.8 3.8

Integrals Calc time 6 hours 1.8 hours

Spin 0.33 0.33

Top 5 Orbitals

ORB Char. Energy Char Energy

24 CEN Ox,OyNx,Cx -0.463247 CEN Ox,Oy,NX,Cx -0.463264

25 CEN Z-type -0.434348 CEN Z-type -0.434359

26 NEI Ox,Oy,O1,N, -0.399734 NEI Ox.Oy,Oz.,rz, -0.299749
• Cz,CEN H2s Cz,CEN 112s

27 UEI Ox,Oy,Oz,Cz -0.396385 NEI Ox,Oy,Oz,Cz -0.396391

28 NEI 0:,Oy,Oz -0.370486 14EI Ox,Oy,Oz -0.370494

t
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these, errors this large occurred in very few. Also, due to the

means In which these ao's are combined at the UHF stage to create

the Hamiltonian matrix elements, these errors are not expected to

contribute to a significant error in the final result.

Table 5.2 shows the approximation of scrubbing the integrals
-6

at 10 tolerance is an excellent one. It also shows the distinct

separation of neighbor orbitals from central ones and also the

large number of nearly degenerate orbitals. In this orientation

the most weakly bound MO is primarily centered on the neighbor.

Note, the system was not geometry optimized since the primary goal

here is to work within the crystal geometry.

Each of the other dimers in the cluster were also briefly

studied. D8 was also brought to full convergence with its

scrubbed integrals. Its energy was -290.565751, spin=0.42. The

orbital ordering was identical to D1 except 16 and 15 were

reversed (they are nearly degenerate~). Dimers 2 through 7,

although not brought to convergence, after 10 iterations exhibit

good Mulpops and orbital eigenvalues (see Table 5.4). It is

interesting to note that although none of the dimers is

geometrically equivalent, they all appear to behave in a very

similar manner. This is an indication that this energetic sy:;tem

is a weakly interacting one.

_t. m~mm • m
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C
Table 5.4

Ground State Energy After 10 Iterations, Dl D8

Dimer Its., Con. Energy (hy) Mulpops

1 37 converged -290.562404 OK

2 10, 1o- 3  -290.555154 OK

-21 0, I02 -290.556447 OK

4 10, 10 2  -290.567864 OK

5 10,: 10-  -290.579741 OK

6 10, 101 -290.566704 OK

7 10, 10-  -290.566730 OK

( 8 49 converged -290.565751 OK

Note: Under 'M4ulpops', OK implies that the 1,ulliken populations
looked reasonable, i.e., there were no charge imbalances with
respect to the moxiomer case.

* Its. = Iterations, Con. = convergehce. 10- 6 was considered to
be converged.

C.
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Molecular Orbital Plots for the Nitromethane Dimer

in the Crystal Configuration

Orbitals 25 and 28

The following three plots show 2 views of D1 1.1O 25 up and one

view of D1 MO 28 up. M025 is localized on CEN, atoms 01, 02, 11

and C and is Tr anti-bonding of b1 symmetry. Plot 27 (xz) shows

the nitrogen and carbon lobes. The seven diamonds to the right

are the atoms of NEII. Note some sharing of charge between CEN

nitrogen and NEI oxygen. The contours are at intervals of 0.005

au resulting in an extremely dense plot near the atoms but

necessary to show the slight interaction between molecules. The

neighbor in these plots is oriented in such a way as to lock

skewed, i.e., the NO 2 group points in, to the left and slightly

down in the xz plot. The yz plot sho;:s the oxygen lobes of CE,.

Also, the lower lobe shows some nitrogen contribution. This view

shows a little more clearly how the weak bonding occurs betw'.een

the two molecules. Plot 29 shows the outermost orbital (28) of

the dimer, which is heavily localized on the oxygens of the



115

neighbor. There is some charge shown distributed near the

nitrogen and oxygens of the central site but a finer contour w~ould

be needed to show the interaction more graphically. The orbitals

of the dimer all had similar character, heavy localization on one

or the other molecule and weak interaction with the neighbor.



116

Orbital PIJot 27
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Orbital Pl1ot 28
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Orbital Plot 29
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Dl Excited State

An excited state of the dimer was determined by removal of

the 281 orbital and the addition of 29t. The input guess for this

orbital was that it be located on the central site and have z

character. An overlap criteria was used which, after each

iteration, determined which of the HF orbitals would be 29T.
-5

After 40 iterations, convergence to nearly 10 in energy

difference was attained. The energy of the excited dimer was -

290.493572 Hy. The top most orbital was localized on the central
S*

site and exhibited the same tT character as the monomer excited

state. The system spin was calculated to be S=1, indicating

convergence to a triplett. The difference in energy with respect

to the ground state dimer is 0.068832 Hy (1.9 eV), close to the

value recorded at the hF stage (1.8 eV) for the monomer. The

central molecule had a total of 4 z-type orbitals in the spin np

space for the excited state and 2 in the spin down space, the same

as for the monomer. In the dirier these orbitals were numbers 29,

21, 19 and 13 with symmetry b,, b,, a2 and b respectively. The

monomer z-type orbitals were 17, 14, 12 and 9 with the same

relative symmetry as in the dimer. A good comparison can be made

between monomer orbital 17 and dimer orbital 29 by looking at

orbital plots 16 and 17 (taonomur 17 up, xz and yz) and crbital

plots 30 and 31 (dimer 29 up, xz and yz) shown on the following
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pages. In both cases, the xz plots show major nitrogen

contribution and some carbon contribution and the yz plots show

nitrogen and oxygen contributions at the yz plane. The apparent

difference in density of the plots is due to the fact that the

dimer plots have contours of 0.005 au while the monomer plots have

contours of O.01au. Since the energy difference from ground to

excited state is essentially the same at the Hartree-Fock level

for both the monomer and dimer and the relative ordering and

symmetries are also the same, it appears the presence of a single

neighbor molecule oriented in the crystal configuration has little

effect on the excited state of the central molecule. The excited

orbital remains heavily localized on the central site. It is this

type of phenomena which is amenable to study by cluster methods.

CI



121

Orbital Plot 30
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Chapter .6

Preliminary Trimer and Cluster Calculations

The computational procedures outlined in Chapter 3 have

recently undergone preliminary testing to determine if:

a.) the fortran codes and complicated file structure

and bookkeeping required was working properly.

b.) the approximations used (scrubbilng of integrals and

neglect of n-n interactions) were reasonable in their

( applications to the nitromethane system.

Initial attempts to converge the cluster of 9 molecules were

unsuccessful. The general tendency in these runs was to cause a

slight charge imbalance in the oxygen atoms of the central

molecule which resulted in a convergence hang-up between two

different energy values on alternate iterations. There were about

15 X 106 integrals used for this cluster (reduced from 1.6 X 10

by neglect of n-n interactions and scrubbing at 106 tolerance).

Care was taken to ensure a correct potential energy calculation ac

the central site. The expected energy for the cluster is on the

order of -619 hy based on the energy of a single dimer (-290 hy of

which -47 hy comes from the neighbor and -243 comes from the

central molecule: (8 x -47) + (-243) =-619). The 11F code toolz

Cabout I hour per iteration for the cluster. Dimer orbital output
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was used as the input guess for the cluster under the assumption

that all 8 dimers acted in the same manner in terms of orbital

structure and energy (This was shown to be the case in Chapter 5).

Since the dimers converged quite well, it was expected that

the cluster would also and that one would see a weakly interacting

system with orbitals characteristic of either the central molecule

or a neighbor with essentially the same types of Mulliken

populations on the central site as int the dimer. The charge

imbalance which occurred on the oxygen atoms (shown to degrade

after each iteration) was not expected. A careful theck of the

code to see if all the labels arid integrals expected to be

(available were actually present indicated the codes to be

performing properly. The problem was then scaled down to a

calculation of trimer characteristics to see if the convergence

problem could be pinpointed. This also failed to converge. The

tendency here was to attain a very reasonable value for the energy

afterN one iteration (expected to be about -337 hy), show

inclinations to converge and then again become stuck between two

energy values. The charge imbalance on the oxygens again showed

up and appeared to be the cause of this problem. Also, a

calculation involving all interactions (including n-n) but

scrubbed at 10 tolerance and run using the original file

structure with a code which was known to function properly lead to

the same type of results.

A final attempt was made to develop reasonable trimer input
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by strippiing the central molecule of all but core electrons (32-8

= 2.4 electrons removed), and performing a counterpoised run in the

presence of both sets of neighbor functions. The trimer being

investigated contained the central molecule plus neighbors

(-11103) and (01103); see Figure 5.1). This also failed to

converge. This is extremely puzzling. The core oxygens refuse to

settle into a stable orientation. The tendency in these runs is

to show slight convergence and then to make a circuitous route

around where convergence should be. The current effort is aimed

towards getting this ionized central molecule to converge with the

aim of creating better input for the trimer.

It should be mentioned that a trimer of lithium atoms run

under a geometry similar to that of the nitromethane trimer and

spaced such that the overlap of functions between atoms was

similar to that between molecules of the nitromethane trimer,

resulted in a converged system when run under both the original

computational method employing all interactions and the new method

utilizing the new labels and integrals file structures, scrubbing

and neglecting n-n interactions. This was an indication that the

codes worked pruperly since with the small basis set applied, all

the integrals and corresponding labels could be monitored to be

sure the appropriate ones in the limit of the approximation were

all there. The lithium runs also indicate that the approximations

used show some promise. It should be noted, however, that a vert,

small basis set was used for the Li trimer (6 fully contracted
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functions) and that there are only 9 electrons (and 9 protons) in

this system. The nitromethane trimer has 127 functions and 80

electrons (96 total electrons minus 16 core electrons on the

neighbors). The clucter has 337 functions and 224 electrons with

the core electrons removed from the neighbor molecules. So direct

comparison between these two systems-should be made with caution.

There is a great deal of electrostatic potential involved at the

central site of the cluster and this may have an affect on th&

delicate charge balance o.f the 11O2 group there. There may be a

very fine region of stability in terms of TO2 electron population

when working with the limited clus'ter of 9 molecules.

The trimer and cluster work is quite important. If the

convergence problems can be pinpointed and overcome, a lot will be

learned about the way in which systems of this type must be

handled from the computational viewpoint. If the cluster can be

converged and reasonable results extracted under the given

apprdximatiois, the ability to perform ab initio calculationc on

systems of large molecules will have been demonstrated. It is

important that an effort be continued to study convergence

problems in syscems of this type.
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Chapter 7

Conclusions

Hartree-Fock and many-body perturbation theory have been used

to investigate the electronic structure of the energetic molecule,

nitromethane. Both ground and excited states have been studied in

the free molecule (monomer) as well as in a dimer configuration.

A preliminary investigation has been done on the molecule in

trimer (3 molecules) and cluster (9 molecules) configurations in

the crystal geometry. In order to make these investigations

Cfeasible, new computer codes (as well as modifications to existing

Hartree-Fock codes) were necessary.

Studies of the monomer have resulted in the lowest reported

ground state energy (-244.3219 hy) and the first correlated result

using extended basis sets and many-body perturbation theory for

the lowest lying excited state (3.47 eV above the ground state).

The outermost orbital of the ground state was found to be a pi-

type anti-bonding orbital of a2 symmetry and the second orbital in

to be a sigma-type bonding orbital of aI symmetry. This is in

contradiction to experimental results which have these reversed.

All results have been disputed due to the close energy spacing

between these orbitals. It may be necessary to use a correlated

wave function to determine the proper order of these orbitals

since they are so closely spaced in energy (about 0.5 eV).
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Calculations of first arid second ionization potentials yield

the best reported results so far when compared to experiment.

The correlated excited state shows its outermost orbital to

be a pi-type bonding orbital of bI symmetry. Other recent work

using small basis sets places this state either higher in energy

by about 1.3 eV than reported here or lower by about 0.5 eV. The

excited state converged to in this work was a triplet. The

singlet-triplet splitting for this state (singlet above triplet)

was calculated to be appro:,imately 0.4 eV, results which were

consistent using both a small and large basis set.

The calculation of nitromethane's dipole moment resulted in

an uncorrelated value of 3.696 Debye, which compares well to

experiment (3.46 ± .2 D).

The electronic transition moment for the ground to first

excited state was calculated. Based on this value (2.8) an

oscillator strength (f value) of 0.125 was calculated for this

transition. Arguments are presented to indicate this to represent

a moderate to weak transition. This transition has not yet been

observed experimentally.

An investigation was done on both the CH3 and 1102 fragments

of the molecule. A calculation of the C-N bond energy resulted in

a value which was low compared to experiment (82.8 Kcal/mole vs

112.8 Kcal/mole for experiment).

An important analysis was made concerning the effect on the

C-N bond strength due to a free charge near the nitromethane
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molecule. A crystal configuration was used where the main

molecule was located at the central position of the proposed

cluster and the single +1 or -1 au charge was located at vrious

positions within what would normally be near-neighbor (-11103).

It was found that the C-N bond strength of the central molecule

could change by up to 0.2 eV depending on the location and sign of

the single charge. The implications are that within the crystal,

it may be possible for free ions located at vacancies to cause

weakening of the C-N bond of other molecules resulting in a

possibility of bond scissioning and release of energy into the

crystal.

Calculations on the NO2 group resulted in the lowest reported

energy for that molecule. It was also demonstrated that the use

of atomic pseudopotentials gave reasonable descriptions of the CH3

and NO 2 fragments.

This thesis also reports the first known computational work

on groups of more than one nitromethane molecule. It was shown

that it is possible to gain convergence for a dimer in the crystal

configuration. It was also demonstrated that a large reduction it

the size of the problem could be attained by scrubbing the

integrals over atomic functions withcut a very great loss in

accuracy. The dimer system was demonstrated to be weakly

interacting in that molecular orbitals are well delineated -iith

respect to central or neighbor domination.

The fi-st excited state of the dimer was also studied. The
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excited orbital was of b symmetry as in the ground state with

possibly a slightly greater contribution from the carbon atom than,

in the ground state. This orbital was very well localized.on the

central molecule with only a weak interaction with the neighbor.

A methodology was developed for studying much larger groups

of molecules. Scrubbing of integrals (highly successful for the

dimer) as well as the neglect of neighbor-neighbor interactions

are proposed as initial steps to redtice the problem size while

hoping to gain reasonable physical results for study of the

cluster. Problems in gaining convergence for the qluster and a

trimer configuration have currently refocused the effort on the

study of convergence criteria for energetic systems of this type.

The approximations mentioned above were shown to be highly

successful in studying a lithium trimer. Extensive code

modification and development was necessary to attempt the cluster

calculation.

-The initial proposal for this study, the investigation of

excited states in nitromethane and the effect of the environment

on them, has been partially successfully completed (dimrer work).

Many other successes were attained in tCe mean time as noted

above.

Suggestions for continued work are:

a.) an investigation of the presence of free charges on

1- excited states of nitromethane and, and once the cluste

is successfully completed, the same sort of study where
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a neighbor is replaced by a free charge.

b.) work on molecular pseudopotentials to attain better

descriptions of outer orbitals when core electrons

are removed.

c.) most importantly, to gain convergence of the trimer

and cluster. Success here. will demonstrate that the

methodology developed can be applied to systems of

relatively large, weakly ihteracting molecules. Also,

much can be learned about the subtleties of convergence

problems in energetic systems.

C.
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Appendix A

Calculation of Cartesian Coordinate From Crystallographic Data

This appendix is intended as a tutorial on how to determine

the cartesian coordinates of any molecule in a crystal given the

fractional coordinates of the atoms of one molecule, data which is

derived from diffraction studies. Much of what follows evolved

from private communication with S.F. Trevino, who along with E.

Prince and C.R. Hubbard has done the primary work on the structure

of solid nitromethane.

The crystallographic data (at T = 4.2K) was taken from

Trevino's 66paper. Neutron diffraction data yield what are

called fractional coordinates, i.e., x, y and z coordinates of an

atom within a molecule in terms of fractions of the lengths of the

sides (a,b,c) of the unit cell. Al$o, a, b and c are determined

from the data.

The unit cell dimensions for solid CH 3NO 2 were determined to

be:

a = 5.1832 A b = 6.2357 A c = 8.5181 A

Table Al..shows the fractional coordinates (X,Y,Z) of each atom

(C.N,O1,02,DI,D2,D3) in nitromethane. The D's represent the

hydrogen atoms. The cartesian coordinates of any atom is then

simply given by the product of the fractional coordinates and 'hu

(7, corresponding lattice parameter:

xl' =X*a y' =Y*b z' =Z*c
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For example, the cartesian coordinates of carbon are given by:

X' = 0.1330 * 5.1832 = 0.6894 AC

y'c = 1.0548 * 6.2357 = 6.5774 A

Z' = 0.3772 * 8.5181 = 3.2130 Ac

where X, Y and Z are from Table Al. These coordinates are with

respect to the origin of the unit cell. All other atomic

coordinates are given in the same manner.

Nitromethane has 4 molecules in the primitive cell. The

above procedure gives the position of one of them. The other

C three are determined by the space group symmetry of the unit cell.

Nitromethane was determined to have orthorhombic space group

symmetry, P212121 The International Tables for X-ray

71Crystallography give pertinent information regarding all

possible space groups. Page 105 of that reference pertains to

P 2121 symmetry (see Figure AI. Four transformations are shown

in this figure, representing the four molecules in the unit cell.

These transformations are given in matrix representation as:

1 0 0

X[y'z 0 1 0 (1)

L6
which corresponds to the original molecule as calculated above.

' -iCN
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0 .t
0 - - 0 + (2X- x , Y . + z -0 0 1

2 o o +iz

0 o 0I

S.1 0 1 (3-i0 0

I z -0..--- 0 + 2 (4)

2 
1, 

+ 1 
(

0 0 -Y 
{

Each transformation is used to find the coordinates 
of the other

atoms (and therefore molecules) 
in the primitive cell.

As an example, to calculate the coordinates 
of the carbon ato' of

molecule 2 we do the following:2'l -1 0 0'l
Ic + -00

20 * -1+ 0

CC
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FC =-0 0 1.0548 + 0 -10548

Z2  0 0 1 0.3772 L L.87t2

The results on the right are the fractional coordinates, which

then have to be multiplied by the lattice parameters to give the

final cartesian coordinates of molecule 2's carbon atom.

2 2 = 0.3670 * 5.1832 = 1.9022 A
c

S-2 = 1.0548 * 6.2357 = -6.5774 A

Zc2 0.8772 * 8.5181 =7.4721 A-

Applying this transformation to the other atoms creates the

position of molecule 2. Molecules 3 and 4 are obtained

analogously using transformations 3 and 4 above. The molecules in

adjacent unit cells are determined by adding to the coordinates in

the primitive cell a vector joining the origins of the two cells.

The above coordinates are for unit cell (0,0,0). For the (1,0,0)

coordinates of carbon in molecule 1 ((1,0,0) is the unit cell

adjacent to (0,0,0) in the direction of a) we have:

x (1,0,0) = 0.6894 + (1 * 5.1832) = 5.8726 A

1 (1,0,0) = 6.5774 + (0 * 6.2357) = 6.5774 A
c

z (1,0,0) = 3.2130 + (0 * 8.5181) = 3.2130 A[ k. Z~c '""
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C

or.in general:

x n(h,k l) = xn (0,00) + (h * a)
C C

Yc (h,kl) = yn(0,0,0) + (k * b)

zn(hkl) = z (0,0,0) + (I * c
C C

where h, k and I are allowed all integer values and n represents

the transformation involved. Application of the above procedure

will allow one to obtain the location of any atom in any molecule

in the crystal.

Molecule (0,0,0)01 was used as the central molecule. Its 8

nearest neighbors were determined to be:

(-1,1,i)03, (0,1,1)03, (0,2,1)03, (-1,2,1)03

(0,0,0)04, (0,-1,0)04, (1,-1,0)04, (1,0,0)04

Note that molecule 2 (02) is not one of the nearest neighbors.

The coordinates of (0,0,0)03 and (0,0,0)04 were determined as

above and then translated to corresponding unit cells.

A coordinate transformation was performed to place the origin

at the niLrogen molecule of (0,0,0)01 and the x-axis along the C-I

bond with atoms 01, N, 02 and c in the x-y plane. This was done

to Invoke what little local point group symmetry there was on the
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central site. It was later determined that the oxygen atoms in

the central molecule don't quite see. the same potential and use of

symmetry introduced a slight error in the potential energy

integrals.

The general procedure for performing this translation and

rotation is as follows. Determine the coordinates, in A, of

(0,0,0)01 atoms from the fractional coordinates. Subtract the

nitrogen coordinates from. those of each atom to translated the

molecule to the new origin. Trevino 66 also gives the interatom

distances and bond angles. From these, it is easy to determine

) what the x, y and z coordinates in the final reference frame

should be. One then determines the direction cosines for the

rotation from the following:

x (1 1 1 *X) + (112 * y) + (1 * z)' = (Il * x) I2

21 X)+ (122 * y) + (23 * Z)

z' (1 3 1 *X) + (132 * y) + (133 * Z)

where the I. re direction cosines, x, y and z are the original

(translated) coordinates of the atom and x', y' and z' are the

desired coordinates. Both the unprimed and primed coordinates are

known for each atom of (0,0,0)01, the first from the

crystallographic data (after conversion to cartesian coordinates

and translating to the nitrogen atom) and the second from the
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relativu positions of the atoms in the molecule.

Therefore, one can obtain 3 equations in 3 unknowns for each

of x', y' and z' using the desired.and known coordinates of 3

atoms. The direction cosines are then solved for.

Once the positions of the other molecules of the cluster are

determined from the crystallographic data, one then translates

them based on the coordinates of the central site nitrogen atom.

Then the rotations given above are applied, based on the

calculated direction cosines. Finally, all coordinates are

converted to atomic units (au) to be used in the POLYATOM

integrals code (I au =0.529 A).

C

C
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Table Al.

Atom P'arametor 4.2 K 78 K

C X 0.1330(5) 0. 1290(D)
y 1.0548(3) 1.0521(5)

Z 0.3772(2) 0.3973(5)
Uil 0.0149(6) 0.0217(10)
UZ 0.0115(5) 0.0198(11)

U3 0.0075(7) 0.0177(16)

U12 -0.0055(5) - 0.0029(1)

U13 -0.0001(0) -0.0000(0)

U2, 0,0001(0) 0.0000(0)

N X 0.3020(3) 0.3609(5)

y 0.9136(3) 0.9128(5)

Z 0.3749(3) 0.3771(5)
0. 3.1 (4) 0.78(7)

01 x 0.5179(6) 0.5158(10)

y 0. 9271(C.) 0.9273(10)

Z 0. 4804(4) 0.4309(6)

0 o. 82(4) 1.72(8)

02 X 0.33817(7) 0.3S20(II)

Y 0.7S.1(5) 0. 7335(9)

Z 0.2674(5) 0. 299(7)

9 0.82(4) 1.72(8)

D" X 0,0755(6) 0.0686(12)
V 1.3o0S(5) 1.0730(11)
Z 0. 2577(4) 0.2694(9)
ulk 0.0325(7) 0. 0095(10)

U n  0.0436(10) 0. 1119(27)

U0. 0088(6) 0. 0320(16)

U12  0.0183(9) 0. 0037(21)
U11 - 0.0013(1) -0.0063(2)

U 23  -0.0015(1) -0.0089(2)

D2 X -0.0150(3) -0.0071(5)

y 0. 9737(4) 0,9808(7)
Z 0.4420(4) 0.4433(8)
Ui2  0.0205(6) 0.0415(11)

U0. 0211(5) 0. 0553(1-)

U3 0. 0434(1 1) 0. 11G9(31)

Z111 0.0019(5) 0. 023C(13)

U03 0. 0133(5) 0. 03G2(9)

U2 3 .0 175(f, 0.0479(12)

D3 X 0. Is'!5(4) 0.1775(5)
Y 1.2022(3) 1. 1934(6

Z 0.4335(4) 0. 4259)

U11  0. 0188(1,) 0. 0330(10)

U n  
0.0193(5) 0.0442(12)

00.39(12) 0. 1359(35)
U. f.Qon(ol 0.0141 (12)

U11 -0.0116(4) -. 02'7G(1)
U-0. 01r3(6) -0.040G(I1)

Fractional Coordinates for Nitromethane

From Trevino (Ref. 66)
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C

0.19 P 21212,
Orthorhombic 222 P 21 2t 21 No. 19 P 2 21

D2

0 -°o

(Origin halfway between three pairs of non-intersecting screw axes

Number or posidons, Co-ordinates of equivaicnt positions Conditions limiting

Wyckol notation, 
Cosstion licting

ad point symmeryposberfltin

a- 1 xyz; -x,5, +z; I+xI-yf; ., +YA-z. hkl:1
Okl: No conditions

hkO:
hOO: h-2n
OkO: k=2n
001: 1- 2n

Symmetry of special projectionF

(00t) pgg; a'=a,b'=b (100) pgg; b'-b, cd=c (010)pgg; c'-c, a'=a

Figure Al.
Orthorhoubic Space Group Symetry P212 21

From Ref. 71

C
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Appendix B

Notation and Meaning of Symmetry Operations and Orbital Bonds

When discussing the character of molecular orbitals, mention

is usually made of the symmetry of a given MO. Table B1.is the

character table for C2v symmetry operations. This group has for

independent operations; identity (E), 2-fold rotation about the

symmetry axis (C2 ), and reflection in two different planes (av and

0r).Figure Bi. shows these operations when applied to the C-i-

01-02 group of atoms in nitromethane..

Symmetry element a I implies that whenever any of the four

operations are applied to the molecule, the molecule looks exactly

as It did before the application. Symmetry element a2 indicates

the the identity and 2-fold rotation operations leave the molecule

unchanged but either of the reflection operations reverse the sign

of the wavefunction (orbital) of the molecule. An example is

shown in Figure B2. Applying a 2-fold rotation about the x-axis

(symmetry axis) brings the (-) lobe of 02 into the (-) lobe of 01

(and + - +), i.e., the molecule is unchanged. However, reflection

in the x-z or the x-y planes cause a (+) lobe of an oxygen to go

to a (-) lobe on the other oxygen, etc. Therefore, a -1 is

associated with both o(xy) and o(xz) in the character table.

Similarly, oI syiiimetry implies the identity and a(xz) operations

leave the molecule unchanged and C2 and oxy) cause a sign charije.

For b2 symmetry, the identity and a(xy) operations leave it

2 m mImm~
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unchanged while C2 and o(xz) cause a sign change.

Figure B3 shows what is meant by a and Tr bonding. The top

part of the diagram shows how a a bond may be formed by thd

overlap of various types of orbitals. A molecular orbital which

Is symmetric about the line joining the two atoms is called a

sigma (a) bond. Pi (n) bonds are shown in the lower half of

Figure B3. These are created by the lateral overlap of orbitals

and result in the line joining the two atoris to be free of

electronic charge. Also shown is a a bond formed by 2 p-type

orbitals. Combinations of more p orbitals can yield the toroidal

charge distribution of the overlap of two rr bonds as shown at the

7bottom of the figure. Again, no charge overlaps the interatom

radius vector. The diagrams of Figure B3. were taken from

reference 72 and the character table from reference 73.

Table B1

Character Table for C2v Svmmetry

C 2v E C2  av (xz) av (xy)

aI  1 1 1 1 x

a2  1 1 -1 -1 Rx

b1 -1 1 -1 z,R

b1-1 -1 yR z

Note: x is the axis of symmetry.
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CY

01-. ±01 or ±02

-C X 2-fold axis[X

ZI N-,N

L --

02 -±02 or ±01

Figure BI

The sign change depends upon the type and orientation
of the function located at the atom as well as the
applied symmetry operation.

4'z

Figure B2

2-fold rotation about X places the (-) lobe of 02 at
the (-) lobe of 01 whereas reflection in the x-z pland

i places the (-) lobe of 02 at the (+) lobe of 01.

ci.N
d0
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: .F- overlap of p, atomic orbitals :F:F:

09
H, H overlap of s H:H

atomic orbitats

---- ' -, -'--- 1--

+4 +

0 .C 
H: 9:

H" -F: overlap of s and p,
F: * atomic orbitals

S), pi bond

sigma bond

two pi bonds

- .4,.." .-- _2'

:N:::N"

Figure B3.

Examples of Sigma and Pi Bonds

From Ref. 72
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Appendix C

Tables of Basi.s Sets

This appendix lists tables of basis sets used for
nitromethane monomer, diiner, trimer and cluster calculations in
this thesis as well as molecular coordinates for these systems.
Main features sho-wn in the tables are the atomic center (oxygen =
01 or 02, etc.), the type of function (Gaussian) associated with
that center (s, x,y,z (p-type), etc.), and the exponent and
coefficient used in the function. The column containing the much
larger numbers (such as 7817. for 01, s) holds the exponents. The
beginning of each table shows the x,ty and z coordinates of each
center (in au) ,,2 wll as the charge'associated with that center
and sometimes a code (such as I1LP) which indicates that
pseudopotentials are to be used to replace the is electrons for
that center (in which case the corresponding charge is reduced by
2).

Table Cl ................ 48 functicn set used for the ,monouier.
(Note: The final four bond coordinates

r_, <BNC,DCN1,BCH2,BCH3> are not correct
in this table.)

Table C2 ............... 57 function set used in both the free
molecule and crystal geometry (shown)
and for the central (main) molecule
In calculations involving more than
one molecule..

Table C3 ............... 80 function set used for the monomer.

Table C4 ............... 81 function set used fo-. the monomer.
This set is the same as the 80 function
set except for the addition of the
carbon d function (YY).

Table C5 ............... 84 function set v.;ed for the monomer.
This set is slightly uncontracted
(oxygen and nitrogen s functions)
compared to the 81 function set.

Table C6 ............... Coordinates (au) of the central molecule
and 8 nearest neighbors in the cluster.

CJ
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Table C7 ............... 35 function set used for neighbors in
calculations involvinq c ore than one
molecule Th.1s table shows the free
molecule coordinates as it was used
for basis set development. Also shqwn
are Topiol pseudopotential input
parameters for nitrogen, oxygen and
carbon.

Table C8 ............... 92 function set used for the dimer runs
with the crystal geometry. The neighbor
coordinates shown in this table are those
of (-11103). Pseudopotentials are also
shown for the neighbor. This set is a
combination of the 57 and 35 function sets.

Table C9 ............... 127 function set used for the fully
interacting trimer. This set is a
combination of the 57 functibn and 2,
35 function sets. Neighbor pseudo-
potentials are also sho:n. The neighbor
coordinates are those of molecules
(-11103) and (01103).

Table CIO .............. 56 function set used for the NO2 fragment
when converging to the low energy reported
in this work.
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ABSTRACT

Theoretical models of off-center sovalent snhst ititri nal

impurities in alkali halides are examined. C'I(cuIat:ions have
+

been jerformed on Li in KCI , 3 representative system known

experic.entally to exhibit off-center behavior. The potential
+

seen by the Li ion in the lattice has been calculated within the
shell model us ing the compluter program WADES and by ins f r.

Unrestricted, Hartree -Fok IUPF) - us ter embedded i, a e _ _

lattice using the computer program ICECAP. For the case using

HADES, off-center behayior was pre dicted, and the resulling

potential was used to predict the tunnelling s ,litting of the

system and the Crueneiseri parampter. The tunnelling splitting

was calculated to be 1.19 meV fonr 7Li and 1.26 meV for 6 Li

compared to experimental results of 0.10 meV and 0.14 meV,

respectively. The Grueneisen parameters were found to be 60 for

7 +7 i and 66 f ( i , , ccmpared to e,:perimrent i results of 150 for

both isotopes. For the cazes u.ing ICECAP and UHF, off-center

behav, or wtn predicted, bul the c'uantitative agreement with

experimental 1-arrier heights was not as good as that for HADES.
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CHAPTER 1

INTRODUCTION

The computer program ICECAP promises to offer a reliable

method to calculate energies of point defects in ionic

crystals.(i) The approach used by this program is to perform an

Unrestricted Hartree-Fock self-consistent field cluster

computation embedded in a lattice described by the classical

shell model. An important problem in such embedded-cluster

calculations has to do with quantum-mechanical cluster boundary

conditions, since the classical shell-model lattice does not

provide any Pauli exclusion of the cluster wavefunction. A

mechanism called Kunz--Klein localization(2) has been implemented

to provide a systematic, mathematically rigorous boundary for the

quantum-mechanical clusler.

Considerable work, both theoretical arid experimental, has

over the past two decades gone into investigating low-lying

energy levels of defects in crystalline solids.(3) These levels

may arise when the potential seen by a defect in a crystalline

solid possesses two or more equivalent minima rather than a

single minimum at the site of substitution. Tunnelling between

these minima may then split the ground state of the defect into

two or more states with very closely spaced energies.(4) These

level splittings may be very small compared to the excited energy
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stales of the imp~i'ity which remain thermally inaccessible at lo~w

temperatures. These energy levels may also be very small with

respect to the Debye energies of the crystalline lattice, making

it possible, in many cases, to separate the tunnelling behavior

from the lattice phonons. (3) Among the systems which exhibit

these properties are certain systems of small isovalent

substitutional impurities in alkali halides, the classic example

being Li+ in KCI. Due to the relative simplicity of these

systems, it is hoped that they will be particularly amenable to

quantitative theoretical analysis. Such a theoretical analysis

has been undertaken, using ICECAP or the classical shell-model

program HADES(5) to obtain potentials for these impurities, and

the computer progj-cams DYNFIT and DYNNUC to solve for the dynamics

of these impurities in the potentials so calculated.

1 1 Background to ICECAP

In 1984 Vail et. al.(6) analyzed the F+ center in MgO, a

single electron trapped in an oxygen vacancy. Because of the net

positive charge of this defect, lattice relaxation and

polarization could niot be ignored. A relaxed, polarized lattice

was generated by the classical shell-model program HADES(5) in

response to the multipole momert.s of a second-nearest neighbor

Hartree-Fock cluster determined by the ATMOL program.(7)

Qualitative agreement with experiment was obtained, but it was

noted that a more systematic approach to quantum-mechanical
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cluster boundary -(onditions was necessary, and that automation of

the iterative cycle was desirable.

Such automation was achieved in 1985, with the computer

program ICECAP.I) This program combines the HADES classical

shell-model lattice program with the UHFABK(8) Hartree-Fock

cluster program, under the control of a driver program which

automates the iterative interaction between the two. Since it

was writtei., it has been tested and enhanced, but the need for

systematic boundary conditions for the quantum-mechanical cluster

has remained. In the absence of such systematic boundary

conditions, the Pauli exclusion of the cluster wavefunction by

the point ions i:1 the classical shell-model lattice must be

provided for by using suitably localized cluster basis functions

c by chcos i4g the qijrltuni-mecharnical regionr so that it is

surrounded by cations which bear complete-ion pseudopotentials.

1.2 Background to Off-Ceiiler Imprities

It is now undertood that in c-ertain systems of small

isovalent substituticmnial impurities ii alkali halides, the

impurity tunn-ls between equivalent off-center minima. The

existence of off-center minima is due to the fact that for these

small impurities the gain in polarization energy due to locating

off-center is not cancelled by a correspornding cost in Pauli

repulsion energy. Since in the pressure regime of interest (less
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than 10 kbir) the alkali halides are cubic crystals, symmetry

dictates that there be either 6, 8, or 12 equivalent minima,

corresponding to displacement along the <100>, <111>, or <110>

directions, respectively. The known off-center systems and the

directions of their displacement are summarized in Table 1.IA and

Table 1.1B. Let us review the experimental and theoretical work

which has led to this level of understanding.

1.2.1 Existing Experimental Results

The first indication of the unusual properties of Li4

defects ir KCI was :in 1)64, when a dip in the low temperature

thermal conductivity, indicating a strong resonant scattering,

was reported. (9) Subsequent ly a large polarizat ion in an applied

electric fie],(l1 ) and an electrocaloric effect,

_ . e. para ]c 1 (-tri cool i;ig, (1 I) were observed. That the

potential minima in this system lie along the <111> direction was

confirmed by measurements of the sound x7eoci ty(12) and by

nuclear magnet ic resonance experiments. (13)

The energy ]HveI diagram for the ground tunnelling multiplet

of Figure 1.1 results from very general assumptions concerning

the form of a potential with minima along the <111> directiorl.

The splittings, however, depend on the relative importance of

tunnelling along edges, face diagonals, ard body diagonals.

Unfortunately, most experiments are unable to distinguish the



TABLE 1. 1A

List of systems with substitutional alkalis
exhibiting off-center behavior

(Blanks imply no experimental data)

System Off-center?

Li + in NaF

Li + in NaCl no

Li + in NaBr no

r', i +  inh Na I

1i + in KF

li +in KC3 <1il>

+
Li in Kr no

Li + in KI

1i + in RhF

Li + in RFbC Io

+
M~ In RbBr

Li + in RbT

Na + in KF
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TABLE 1. 1B

List of systems with substitutional halides

exhibiting off-center behavior

(Blanks imply no experimental data)

System off-center?

F in LiCI

F in NaC] no

F in KCI no

F in NaBr <110>

F ini KBr no

F in RhBr no

F in NaI no

F in KT <110>

F in Ri l110>

:I in KBr'

Cl in KI

Cl in Phi
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FIGURE 1 I
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individual splittings. However, an unique phonon spectrometer

experiment(14) has determined that for 7Li+ equal splittings of

about 7A = 0.095 meV are appropriate, whereas for 6Li unequal

splittings were found, with 6A, = 6A) = 0.121 meV and

6A2 = 0.086 meV. Specific heat measurements(15) interpreted on

the basis of equal splittings have determined 7A and 6A to be

0.102 meV and 0.143 meV, respectively.

A very interesting feature of these off-center impurity

systems is that due to the delicate balance of polarization and

Panli repulsion energies, they are very sensitive to changes in

the lattice constant, e. g. by hydrostatic pressure. It has been

observed by KaharI et. a1.,1C) that a pressure of about 4 kbar,

corresponding to a strain dr'r of 0.58%, suffices to drive Li+

hack on-center in KC . This experiment , fair infrared

spectroscopy in a pressure cell, produced data only for strains

dr,'r greater than about 0.3%, corresponding to pressures greater

than about 1 .3 kbar. To obtain information on the zero-strain

dependence of the tunnelling states, Dobbs and Anderson(17) have

determined the Grueneisen parameter for a single Li + in KC1 by

specific heat and thermal expans; ien measu-;rements. For these

purposes we may define the Grueneisen parameter f- due to a single

impurity with e-nergy levels Ei contributing a specific heat Ci as

1 , , .
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F = (P.C.) (Z C.)

where

Fi -d(lInE i d(lnV)

For equally spaced levels with splitting A this simplifies to

F = -d lnL),'d(lnV)

They obtain F = 150 for both GLi+ and 7Li , which they contrast

with the value obtained by extrapolating the previously mentioned

results of Kahan et. al.(16) to zero strain of F _ 300 and

previous measurements of the thermal exparision(18) which also

yielded r : 300,

1.2 .2 E:isting Theoretical Work

Theoretical work for Li + in KCl and related systems takes

two forms, attempts to determine the nature of the potential well

in which the Li + ion moves, and attempts to calculate the

tunnelling splittings.

Several attempts have been made to apply classical lattice

methods to the calculation of the potential wells in which such

ions move. The displacement of such small substitutional ions to

off-center sites depends on a balance between overlap and

polarization terms in the lattice energy, and the successful



i: 1 , ut this; effect in latt ice calcu Iat.ions is therefore a

very r >.t i I tez t of 'W e lattice model used. Wilson

et. .(29) using a polarizable point ion (Born-Mayer) model and

ani ad hoc: modification to the ,i + -Cl- potential inferred from
+

LiCl, founi stable minima along the <111> direction for Li in

KMk. Quigltz.y and Das(20) also used a polarizable point ion

inodel, with a Born-Meyer-Verwey repulsive potential for Li -Cl -

and obtained stable minima alo-g the <:111> for Li C in MC, and

predicted that at a strain dr/r of about 1%, corresponding to a

pressire of about 7 kbar, the Li + should be driven on-center.
+

C>Ilow et. al.(21) applied the shell model to Li in KCI using

poLltentials as given by staridard pres;criptinr1s and also found

stable minima along the <111<; they obtained values for dr/'r the

strain required to drive the Li+ on-center of 1% for one standard

potent i and 2% f L' aroth).er.

Attempt,, have a],iso been made to calculate the potential well

in which Ti moves in KC' ly f itting to the experimental

absorption lines. Devaty aiid Sievers(22J reported such fits for

lattice strains from 0.0% to 0.6%. They used the approximation

V(x,y,z) =V 0 /x) + V, (y V, () and fit to formr;

V0 = Ax 2 + Bx 4 and VO = AxZ + Be

F Ily, the tunnelifis in such systems has been modelled by

Gomez, Bowen, and Krumhansl. (4) They modelled the potential by

har'monic wells cerilered on the minima, and considered minima
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,- , th -E , >, ,,1 10 and <111> directions. Their wavefuin:t iw,-

were h irinonic osci lator funct ions also centered o1 the minima.

T.hey obtained explicit expressions for the energy levels within

tnis model in terms of the overlap and Hamiltonian matrix

elements, and considered two cases. For the case of isotropic

ha rmonic w lus with minima along the <111> (edge tunnelling

minat ing) they obtain a tuinielling multiplet consisting of four

e-lua ] iy states with legeneracies 1-3-3-1, i. e. Figure 1.1

wit, all 4. equaI For the case of wells highly elongated along

the body li agoimal (diagonal tunnel ing dominating) they obtain a

t unneliing mult i plet cons is inj of two states, each qu-(drl~ply

Sege.erate,. e. Figure I.1 with AI i C,, C , Az nonzero.
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CHAPTER 2

CALCULATIONAL TECHNIQUES

The goal of this study is to construct a theoretical model

for an isovaleit substitutional impurity in an ionic crystal. Of

particular interest is the motion of the impurity. One can

imagine the exact solution T(X,x) of the full system Hamiltonian.

However, such a solution is neither practical nor useful. Even

if the cAc(uIationaI difficulties could be overcome,

interpretation of the results would be nearly impossible.

These, cdifficulties are overcome by a series of

approximations tu be described in this chapter. The first of

these is the Borii-Oppenheimer approximation, (23) which separates

the nuclear from the electronic coordinates. This allows the

electronic structure to be calculated for a frozen lattice,

giving the energy as a function of the lattice configuration.

The nuclear motion can then in principle be calculated by

treating this function as a potential for a quantum mechanical

calculation. The section on the compute' program ICECAP

describes how the energy as a function of the lattice

configurat ion is obtained, and the section on the computer

programs DYNFIT and DYNNUC explains how nuclear motion is

calculated from these potentials.
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2.1 ICECAP

A computer program has been developed which combines a

quantum-mechanical treatment of electrons in the vicinity of a

point defect with a classical discrete-ion model for the rest of

the crystal, which is only weakly perturbed by the defect. This

program is named ICECAP: ionic crystal with electronic cluster,

automatic program.(I) The portion of ICECAP responsible for the

quantum-mechanical calculation is called the UHF sequence of

programs, (8) which implements the Unrestricted Hartree-Fock

equat ions, with exteri5;ions implementing Kunz-Klein

localization.(24) The classical discrete-ion portion of ICECAP

is called HADES,(5) and implements the shell model of Overhauser

and Dick.(25)

2.1 .1 The Hirtree--Fick Approximation(26)

The immediate ' icii:ity of the defect whose properties are

heing calculated is treated ir, the Unrestri(-ted Hartree-Fock

(UHF) approximation. This approximation can be derived from the

nori-relativistic Schroediinger equat ion for the total system

wavefunction: HT'(X,x) = ET(X,x) where the lower-case variable

(x) refers to electronic spatial and spin coordinates and the

upper-case (X) to unclear coordinates. (27) The Hamiltonian is

written as a sum of electronic, nuclear and interaction parts:
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H = He + HN + Hint

H + 1 1 +I j i I . - - j

i Z 72 + 1 zIzjIIJI j-j - IJ

Hin t t Iri - 1

where we have adopted Hartree atomic units (1-= e m = 1).e

The next step in obtaining the UHF equations is to make the

Borri-Oppenheimer approximation, (23) separating the nuclear and

electronic parts of the wavefunction. We calculate only the

latter, in this context approximating the former by a fixed

lattice which contributes to the total energy a constant shift

called the nuclear repul iori energy.

The Schroedinger equation to be solved is now of the form

H'ix.... x n ETxI.x 1 ) where x. represents the space and

spin coordinates of the i-th electron. We now approximate the

wavefunctior, T by a singjle Slater determinant of one-electron

3pinorbitals q (x.:



(p 1(x 2 ) W 2(x 2 ) .. n(X 1)

.. - .- 1
x ) q (i!)-(x

1,2 12n 2 2 f

The Slater determinant form is selected because it automatically

provides the aritisymmetry required by the Pauli exclusion

pr inciple.

The Hartre-Fuck equations result from an applical ion of the

variational prin(;iple. The one-electron spinorbitals are varied

to minrimize T' I H! T> subjert to the constraint that the

spinorhitals form an orthonormal set. This constraint is

enforced by introducing Lagrange multipliers \ .. The result of'2

the minimizatioI iu FX. (r ) U. ..j" j(x) , where F is the Fock

operator:

I- I - - i
F(p)W. i(x) 2 L dy ji

x -yl

V (Y ) Y

.j1 ) - '

J ~~ -1x 1

arid integrations include inner productE7. over spin space. A

unitary transformition will leave determinantal wavefunctions

unichariged, s(- we apply a transformation such that the matrix of
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. , : it ipl iers is cliagonal ized. This gives us the stanTl rt

form of the Hartree-Fock equations FW.(x) = E(X (x).(28) Because

the Fock operator depends on the one-electron spinorbitals, these

equations mutst in general be solved by iterating to self-

consistency. Koopmans' theorem suggests that we may interpret

the E i in these equations as an approximation to the ionization

energy of the i--th electron. (29)

Applying the Hamiltonian to the Hartree-Fock wavefunction

thus le-f imed givs us the expression for the energy of the system

in the Hartree-Fock approximation:

E (x2 d

2 dyd-
-Y! . . . . .. . . .

2 - - ydx

_ ' _ ___
2 -

We can use the Hartree-Fi equat ions to el imiiiate the Coulomb
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an xchng ter'1s fromn thiis expr'ess ion in fak'§-Ii _)f the Hiar re -

F(Q k, e i genva Iues We theri obt a i in

I I x. R

IJ !RT R T1

The f inal term is the nu(_ l ea r re pulIs io n e ne rgy ine. t i,- i ned ea rIi e r

One f urther simp 1 i f i cat ion is made. in, ler i virig tlnrestri c ted

Hartree-Fock. The oDne-electron :rpino(rhitals kv. are chosen to be

theP ' itif a spatOial fun-v 'ioi -andl ail eigenstate of spin(S)

Because of the oi vhonon)ina i ty of -1andI 0 the :spin di-sappears from

the cpt I~er (2~~ ioii *ljr a-t tti the Restricted

Hart ree-Fock- (P1HF it(- : n -n requi remnents of symmetry are

Imposed on the spat ia I, forte t icris, nor mnus t there necessar ily be

a~t zrrep ideceb, tween the :3j9in Itp and spndown

orbitils9.('30)

Nkirner i c Iii t eg rat j r, an, he uised In sri Ivp the Hart ree-Fock

eqtaat ions3, but the calculat ions becrome mcch miore tractable when

the orbit als are exparnded aL- ru- ar combinationts of basis

f 13ne--t iont-s. This separates the pr blhem into an integration phase

in which integral s over pasarid quartets of has s fuctionis are

calculatedl and ;.m iterative phase in which standard numerical



rntci:, techniques are employed. (31) Calc:ulations are performed

using basis functions of Cartesian Gaussian type, i. C. of the

form x y z e These have the advantage of exact analytic

integrability, even for functions on different ceniters, although

the disadvatntage of lack of resemblance to hydrogen orbitals must

bIe ecogi :ied. (32)

2.1.2 Kun.i Klein Localizat ion(24)

In prin( iple we would lI ike tc sove the Un1restricted

Hartree-Fock (iIHF) -yiat iz for an entire sc2 id--.;tate

systen, (33) in this cas,- -an ji . - These equa-tions are:

-. 4

L

I -

where the summal ion in the lef ini:ion of p is over occupied

.,lit-2 . )Illy. T _ '-lp i n of this equat ion for an ionic-

crystal of reali:st i- si:'e i3 -Jearly impossible; we wish to treat

quantum- mechari-al ly o l- t f iinite clni,-'I which we shall call A
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ti eat with a clis i tiscrete ion Model thie remainder If

the systein, wh ich we shall c,11 the envi ronmerit of A and deInte

by W.

Let us obtain a physica' lly m,.t ivit d derival ion of thf

bounddry ,-)-nditions wh ni: L mu t be applied ly ,_-,orsidering the

,.-al-orbita] formalism of Aa arid Gi !Ijert .34) A cIfrivat ion

which is tnatheniatically e:-:act als exjits, and is given in an

ajpe~d ix to this wor.k. Let us use F to dernote the Fock operator

for the entire system. We will assign m electrons to A, where

foi' the sake of physical reasoriab~iIity m will be taken to be the

number of electrons cn the ions inside A. We will write

F . + II A

F - FA + 1A

where FA i-c that part of F which includes the kinetic energy,

nuclear at trdction of the electroris arid noic lei ia ide A, and the

e-lect ron- t ron ptent-iall includllug Coulomb and exchange parts

for' the electrons. Since we are considering an ionic crystal let

us divide 11 intoi two part s' V M the ]c ng-range ionic (Madelung)
A ia A'

contribution, and the short-range remainder. S may be
A' A

considered to be made up of additive contributions from all the

ion- in the enivironimeirt . It falls oiff very rapidly with

distance, and so only contributions from ions in the immediate

vi(.inity of the r]u.ter needl to he considered.
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Let us -ontsi ler the Adams---Gilbert equation:

F - - n I
A A

'e T i, a ry v~ mit an cipe -It They 11,t~e shown-V~j tjjj 'flOt wen

>m'nT ds iise for -ill the elec-trons- one can obtain orthootinal.

-~~ ~ *v . j-- t.~~ :' ;1tz io cT nT by 5l\'I ti 30'a

A A A A

Ie the5F l ii - se 'lf -cils~~firffj th J te m n lv g V
A'A

cl-- rt. .

A VA i~ '

Inte 'Iitg en1 sef-onistency Th term inilinlV

etlnaes 2 ~lev fllf'ri of fet :ve Folc -I-eroD fon tea loc asise
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f :rnt ions, let oIs coiler the following matrix element between

two hs functions x and , wh i c-h may he thought of as Ihe

,orrection thic effective Fock operator:

S S
<Xc VA PVAPI (I>

The overlap between those orbitals in p from outside A ard the

basis finction xc located insidle A wil1 be small so approximate:

-. = - - 1 1:< i
I -O:C

i in A

t- obta i n

c A<d - W<kv ) i I > q'X IV A 1 x-d )-I - j=OCC C i i A d

I in A J dn A

which upon writi:Lng orbita.s in terms of basis functions and their

expansion coefficients pn becomes

S
<x IV SI

c A Xd

). Y <xix ><X Y <xa VA 'p
ab caa b Id a l I-A;)a a 1b: b

i ii. A :. A

Let us now obtain an express ion for E, the energy of a

system within this formalism. (35) We make the fol ,wing
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definitions, where we hay m states in our cluster A, and N

states in total (recall we are using units in which

e = m e ).
e

f 2- - j
1

g --
i"- W'I
I ZZ

nn 2 nn 2I,J JR I  Rj

Appliying the Iamiltonian to our wavefunction and expressing thle

result in terms of our definitions, we obtain:

N N
= E <iI fI i" + E <ijl g(1-P) ij> + V

i=l 2 i, j=1

Rewriting the Kunz-Klein local izat ion equat ion in matrix element

form using our definitions, we obtain:

N
<i fj I> + < jlg (l-p)l ij'> + <i i>

j A

We define:

Tr. i > mIT = T.+ <iIPATpf [> 1
i=p A I + <i1T i> i < m

Note that thl- valiie of the matrix element <i TI i> for i in A is

known. We could eliminate the Coulomb and exchange terms in this

expression in favor of the localization eigenvalues T. to obtain:I
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F - 2 TT i + <il fj i>
i in A,W

However, let us instead consider this as motivation to define E

as follows:

E' L i + <iI fl i ,
i in A

Note that each of the terms in this def inition orijinates within

A anai is 1nown. To f ind its relationship with E it is useful to

rewrite E as:

= <ij fI i> + <ijlg(l-P) ij>
i In A ,j in A

4- < Jlg I1-P) I i j

in A
j ,-: W

W rnw break tip oar expre;sion f-,r E into parts due to A and W,

reSpe,: t ire ] y:

E ~<i <ij ( l-P)I ij>
i in A 2 1,j in A

1+ Z <i lf i> + 1 E <ijlg l-P)Iij>
i n W 2 i, j in W

z z
+ <ij g(l-P) i i j- + . .

i in A I in A R1 -J1

j in W ,7 in W

77 7Z1 ' "I J I '

2 2 2 i . . .2 ,J in A IRT RjI I,J in W IR I Rj
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Tde Itifying F in this expression gives:

E + i fi i> + 2 <ijIg(I-P)I ij>
i in W i,j in W

+ 2 7
I ZIJ 1 1>Z1j

2 IJ in A JR.I  - I I,J in W -RI  - 71

z z

I in A R -
J in W

We obtait: a ( Omlptationa]ly tra(-table formula for E by celeting

terms which remain approximately constant through the physical

process under considFrat i on. Recall A has been chosen to be

large enough that the only terms which change are in A.

i. The kinet ir enE:rgy part of the terms <iL f it, for i in W

does n ot change.

ii. The exchange terms <ijJ gl ji> for i and j in W do not

change.

Then:

-Z I
< 4 1 Zi> + <ij g I ij>

22

i in W I I i R 1 j W -

I z zIZ Z Z J

z z
+ + .. .... .

I in A I - R I
,T in W
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\ '9 
-ji N the number ,f - Iectruns at site I and recognize

thlat <i- i> does n t (change for i on site I and <ijI g jj>r. i- Pi

does not change for i and j nn the same site, then we can

rewrite this as:

N . . In I n N N

IJ in W JR T R I I , in W IR j i

z ' jIZ I I ) z
+ - L

2 IJ in A - 2 F ' i

+

I in A R T-j
J in W

Then if we clef ine - N I to he the net ionic charge I the terms

-an b e gro)uped together, a fol lows to give our final expression:

77 +' 1 I i ' - i J-

. in W I - 2R. 1, in A - R

+
I in A - RJ1
J in W

Note the sinilarity to the express on for the Hartree- Fock energy

for a cluster in an array of ionic charges without Kunz-'lein

local ization.

It is envisioned that the.qe Knz -Klein potentials will be

associated with the discrete ions nearest the quantum mechanical
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region, and thus would ref] ect the non-coulombic part of the

interaction Uetwe- ,n the electrons (,f this region and those )f the

neighboring ions. Herein lies a problem; in the classical

dlzscrete-ion model used, the shell model,(25) an ion is

represented by two poiit charges, the core and the shell, and the

net charge of the ion is distributed between the two in an

einpirical manner. Thus it is not obvious where to locate the

coordinates of the c-enter of the Kunz-Klein potential for an ion

with respect to the coordinates for the core and shell of that

ion. In a r'elated context it was suggested to introduce a

parameter x which would determine where along the line from the

(ore to the shell to center the potential. (36) Of coiirse, thi'

simply restates the problem as one of determining the proper

value of o. (There is not even any reason to exper-t the same

value of ,i to be o[p imum f,)r every ion, or even for different

shell model parameterizatiorn; of the same inn.) I1it !ally,

however, the program has been written in such a way as to

associate the center of the potential with the position of the

core (_i. e. fixing o = 0.0) .

2.1 .3 The UHF Sequence of Programs

Calculations are performed in three stages. First the

labels generation program LABEI.S uses any available information

on the symmetry of the problem to generate a list of integrals to

be computed. Then the polyatomic: Gaussian integrals evaluation
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program POLYIN evaluates the listed integrals. These two

programs are from the Caltech POLYATOM program package, as

modified by Kunz and his collaborators.(37) POLYIN also permits

the user to replace the core electrons of one or more atoms in

the problem with an effective potential or pseudopotential.

Pseudopotentials may be of either Phillips-Kleinman(38) or norm-

conserviig(39) type. Finally the iterative program UHFABK of

Kunz and his collaborators uses the interrrals to form a self-

consistent solution. (8)

The Kunz--Klein localizat ion potentials appropriate to a

particular crystal are generated by the program LOPAS written by

A. B. Kunz. (8) The output of this program consists of a

potential in tabular form, which is then fitted with Gaussians.

There are two main reasons why we fit the tsbulated Dunz-Klein

localization potentials generated by LOPAS to Gaussians. First,

evaluating the integrals in POLYIN is computationally more

convenient when the potential is expressed in terms of Gaussians.

Second, although the potentials are of interest in their own

right, the publication of the number of pairs of mesh points and

values required for a tabulated potential would be impractical

because of both the excessive amount of space required and the

proneness to error of the typesetting process.
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The program KKLFIT of P. B. Keegstra performs the fitting

process.(40) This program performs a linear least-squares fit to

obtain the linear coefficients for n Gaussians, and then uses a

nonlinear minimization subroutine to optimize the values of the

Gaussian exponents used. Two minimization subroutines are

available: the subroutine MINI which uses the quasi-Newton

method and the subrout ine MINPBK which uses the gradient method.

The l.atter subroutine seems to be more dependable.

2. 1.4 The Shell Model

The region to be treated quantum mechanically is embedded in

a classical point-charge shell-moad e l lttice. In the shell model

an ion is represented as a point charge core coupled harmonically

(force constant K) to an uniformly charged (charge Y) massless

spherical shell of indeterminate radius. The cores and shells

are treated as independant entities, referred to as species.

Coulomb interactions apply between ill species with the exception

of the core and shel] of the same ion. Short-range repulsive

interactions may also be defined between any pairs of species,

although they are conventionally chosen to act only between

shells. The form of such interactions v(r) is exemplified by the

Buckingham poteritial:
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v(r) = B e -  
-.

where B, C, and p are parameters.(25) Tabulations of shell-model

parameters, usually fitted to reproduce perfect-crystal hulk

properties, are widely available.(41) The shell model has been

widely successful in describing perfect-crystal and certain

simple defect properties in ionic crystals. Some recent

applications have been reviewed by Catlow and Mackrodt.(42) One

significant shortcoming of the shell model is that, as a central

force model, in rocksalt-structured crystals it cannot reproduce

the departures from the Cauchy relations (C 2 = C44 ) actually

observed. (43)

2.1.5 HADES

In applying the shell model to point defects, we use a

concept first proposed by Mott and Littleton(44) in which the

,rystal is divided irnto an inner region I and an outer region II.

In region I, which contains all the defects, the ions forming the

latti:e interact according to a specified model and the

eqviilibrium distortion of the crystal is calculated by explicitly

relaxing each ion until it is subject to no resultant force. The

response of region II, comprising the remainder of the crystal,

i calculated by considering the lattice- as a dielectric

continuum so that the ions are displaced in response to the

electric field of any charged defects. Even for an ionic
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r'y, tal, these interactioris need to be considered exp ]cit 7ly only

for a small finite part of region 1I adjacent to the defect

(called region IIa). The interaction with more distant ions

(called region IIb) and any induced polarizations are calculated

using lattice sums or continuum integrals.(5)

These methods have been implemented in the Harwell computer

progim HADES.(5) Two significant features of this program are

its use of symmetry and its efficient minimization technique.

ThE pr'ogram applies all symmetry operations of the cubic or

hexagonal group (set by the user) to the defect and crystal to

see under which operat one: the system is invariant. Knowing the

symmetry properties, the program works only with interactions

differing in symmetry, together with weighting factors. The

program carries cit its iniimization using a fast matrix method

developed by Norgett and Fletcher.(45) This method uses first

and approximate second derivatives of the energy function, which

are easily evaluated fui pair potent ialn; of the forms used.

2.1.6 Interactions within ICECAP

The program ICECAP has been written to automate an iterative

cycle containing both HADES and UHF and to keep track of the

interactions between them. The system under investigation is

partitioned into an environment which is controlled by HADES and

a cluster to be treated quantum mechanically, where the cluster
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ont a ins any excess electrons (e. g. in a color center) and those

ions whose positions or electronic structure are significantly

perturbed by the defect. ICECAP is intended to perform a

minimization of the total system energy with respect to the

lattice configuration (shell and core coordinates to be varied by

HADES), electronic configuration (linear coefficients of the UHF

wavefunction), and the cluster configuration (coordinates of UHF

anJ pseudopotential ions within the defect cluster). In practice

a global min-imization routine samples cluster configurations.

For a given cluster configuration the excess electrons and UHF

and pseudopotential ions are first simulated by fixed point

charges, from which HADES determines the polarized, distorted

lat i(ce configuration. The shell-model point charges of the

lattice, along with the n-clei and pseudopotentials of the given

cluster configuration, are applitd as a background potential for

an UHF calculation, which yields the appropriate electronic

configuration. Tdeally, the point-charge simulation of the

cluster in the HADES calculation should have all its electric

multipole moments identical to those of the UHF cluster, but this

is obviously not practical. One therefore matches only a finite

set of low-order multipoles. This is accomplished by introducing

into the HADES calculation additional point-charge simulators,

representing a small dipole, quadrupole, etc., thus correcting

for the discrepancies between HADES and UHF up to a given

multipole order. After introducing these simulators, HADES is

once again asked to determine a lattice configuration, which is
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uied as background to UHF, and the HADES/UHF sequence is iterated

to cisistency. This gives a value for the total energy

associated with this cluster configuration, and the whole

procedure is repeated until the cluster configuration of minimum

total energy is found. A diagram of this procedure is given in

figure 2. 1 .

There are two subtle "bookkeeping" matters pertaining to the

different lasses of defined entities which had to be dealt with

i, the -ciistriction of ICECAP. The first is that entities of

ea-h class must ha-',e their coordinates varied only in the

aq,rc-pt iate port ior of the program. The second is that the

interaction between any two entities must be taken into account

exactly once, that is, neither omitted nor double-counted. The

classes of entiti-s defined in ICECAP include:

1. Ions that will be replaced by bare nuclei plus electrons

in UHF.

2. IoriEs that will be, replaced by core pseudopotentials plus

valence electrons in UHF.

3. loris that will be, replaced by complete-ion

pselidopotentJals o)r Kunz-Klein localization potentials.

4. Shell -model ions that will be explicitly moved about in

minimizing total energy.

5. Point ch&rges simulating excess electrons.

6. Point charges simulating multipole moment corrections.

7. Shell-model ions of the surrnunding lattice.
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Cld.sses 1 through 6 are defined as the cluster, and (:lasses I

throLlgh 3 aS the quant um-mechan i cal region.

The portions of the program within which entities of each

class have their coordinates varied are as follows: Classes 1

through 4 have their coordinates varied by the DRIVER, that is,

the overall minimization routine. By convention class 5 is never

mnoved; the positions of these point charges are fixed as part of

the input data. Entities in class 6 are regenerated by the

in ltilpo]e fitting routine each pass through the multipole

c.sistency cycle, ard also the magnitude of their displacements

is user-selectable. Entities in class 7 are moved by HADES.

The proper coulnting of the interactions between entities of

the variois classes is inivsurei by the way the total energy is

defined. This enevrjy is:

E = (EH - E' -- .) + (E + E, + Er)

In this expression EH denotes the energy HADES calculates

simulating the quantum-mechanical cluster by point charges.

ES and Ec are the shell-model short-range and Coulomb energies,

respectively, of the quantum-mechanic-al cluster which are

subtracted out because these intera-tions are accounted for in

the quaritum-mechanical calculation. EA is the total electronic

energy from the quantum-mechanical calculation. Ec is the
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Coulomb energy between nuclei, pseudopotential center!s, and Kijor-
Klein localization centers. E corrects for the energy of the

dipoles modelling the polarization of Ku.nz-Klein localization (or

whole- icn pseudopotential) sites.

2.2 DYNFIT and DYNNUC

The computer programs DYNFIT and DYNNUC calcu late the

response of a sulbst-it'tional ion in a potential which may be

cal:ulated eithei by TOECAP or HADES. The program DYNFIT takePs

the potentials as given by ICECAP or HADES and determines certain

parameters necessary for the dynamical calculation and gonerates

potentials of a form useful for the dynamical. calculation. The

program DYNINUC then take3 these parameters and potentials and

calculates the spe( trum of lO'tajndl states of the substitutional

ion

For computat ioxn.] efficientcy, both HADES and ICECAP make

heavy use of symmetry and are prohibitive in their use of

computer time for systems withoat useable symmetry. Thus it is

reasonable to restrict the computation of potentials by these

programs to systems which exhibit useable symmetry. Such systems

are those in which the substitutional ion is displaced along the

<100> direction, the <110> direction, or the <111> direction.
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The other constraint imposed on the potentials obtained from

HADES or ICECAP has to d wi th the coordinates of the ions other

than the substitutional ion under consideration. The complete

treatment of the problem would require that the potential be

plotted out in a 3N-dimensional space where N is the number of

ions in the crystal, and that this poteatial be used in the

Schroedinger equations for nuclear motion. In the interest both

of computational feasability and of simplicity of izterpretition

we plot out the potential only for displacements of the

substitutional ior, but we allow the crystal to relax fully

during the energy calculat-ion at each displacement. Thus these

Iisplacements nay be thought of as an "effective coordinate." We

assert that this "effective coordinate" exhibits the full

symmetry of the cubic cry;tal.

2.2.1 DYNFIT

The compo ter program DYNFIT takes the potent ial seen by a

substitutional ion in a cubic lattice and determines parameters

and potentials necessary to calculate the dynamics of that

substitutional ion. The potentials used as input are along the

symmetry directions of a cubic crystal, (hat is, <100>, <110>,

and <111>. In order to perform the calculation it is necessary

to define the way ii which these poterials are to be

interpolated off these axes. An interpolationi scheme widely

used(16) is to write the potential af-i - sum of one- dimensional
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potentials in the x, y, and z directions, respect dve ly

V(x,y,z) = V 0 (x) + V 0 (y) + V 0 (z)

This form is calculationally very tractable, as th, thrHe-

dimensional Schroedinger equation decomposes into three identical

onedt imeri;iona] S(hroedi nge r equat ions. The fir'o I calculat ion

performed by DYNFIT is thus to construct such a V0 to match the

potent i a l along one of the symmet ry axes , as selcted by the

1. Following that the program finds the value of 1 which

.fi -s a basis of harmonic oscillatnir functions which gives the

lowest energy for the ground state. Next the program calculates

a correction to the form ilivclving V0 . The way that is done is

t. add in a spherically symmetric potential V and a correction

potel~tia] V such that

V(x,y,:) = (V0 (x) +V (x)) + (V0 (y)+V (y)I

c c
S(VO (Z) + V(z))+ V r)

Given a table of values for V V is chosen such that the fit is
S c

still exact along the same symmetry axis along which V0 was

defined. The best form for V is then obtained by means of the5

minimization routine MINPBK, which uses the gradient method.

Following these calculations, the user has the option of having

the program calculate the best approximations to VO of two

different forms. The two forms are those used by Devaty and
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S ievers; (22) the first form is Ax? f B. 4 and the erconid fo)rm i.s;
-CX2

Ax 2 + Be The way these f its were generated assumes that V0

has its minimum away from the point x = 0. For the first

potential form, Ax2 + Bx4 , parameters were fit by requiring that

tle splitt ing between the first two states be the same for the

original arid fit potentials, and that the minima be in the same

p1,ce. For the second potentiil form, Ax 2 + Be , parameters

w-re fit by i mposi ng tle same two condit iomis imposed o:n le f irst

form, and in Addition the coindition that A be related to the

t mum value of ', by the relat ion 2A = M,, for M the mass of the

-t ie of the i,,is f,)r whih the fit was cz)mpited. That is, Ax'

thE. L"iii rli, pj t(.-W i-i Li whi h the ion ha notural frequency

2. 2. 2 IPV?:NUC'

The comptrTer programi I"VNNIIC( a-v-lat .- the spectrum of

motional states if the subs: it nl m: li!;ing the parameters

calculated in DYNFIT. The f irt stage is called the one-

dimensional caicu]atjon: There the one-dimensional Schroedinger

equation with potential V,(-'; S ,) \,ed using matrix techniques

with a basis set of harmnoic oscillator functions with the

frequency ,) calcunl;tted in DYNFIT. The resul ing one-dimensional

orbitals are combined to form what we refer lo as three-

dimensional basis functions, so--,a]led because of the way they

will be used in the second stage of the calculation. The
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_tJ 1I j t~ iI - f t h i- Ceergy t, i frva.117 t e eah I _in Ir n

()l Ii~n -)va ori ta I ivet, th I it, u f or the tI re e -d imni oi I~~

h a i s funo t 1(01 in this ~ approximat ion, which we call the enlergy

f romn the onie-dimens ional calculation. The 1has is flulct i cur; arc,

sotdby the value oif this ent-rgy, and grouped into multiipiets.

--he rnult iplets of lowest eniergy, crompras lug up to 100 as

functioii*s. are user! in the secondl stage. In Lhe second stage Vtht

flcmiltonlianl mat ri: wi~th the potelntiail V(xV(;

(Vo +v CV (') ) + v ( ')rVC(z) ) - VS (r) isclute using these

functions as a bas--is, and it iJs then diagona lizel. This give--s

thec f linal res;ults, wh ichi are cal ledl thp eniergit-c fro-,m the three--

di Iens ional ICal:- Ilat ioll
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CHAPTER 3

CALCULATIONS PERFORMED

C,.lciriations have been performed on ,i + in KC0, a

r-'resentative system exhibit ing off-ceriter behavior.

c c{''>ations performed entirely within the classical shell model,

s ig the .- ompa prmg r w HADES, wil-I be pie fn ted first. T' ,n

calculat ions performed with an Uiirest ricted Har tree-Fock Iuster

hed oJd within a ]s.i l siell-model lattice, using the

computer program ICECAP, wi]l be presented.

3 1 ADF2- Gn t d S te jaicil;

Cat I )w t. -:". h '" .. :' u I'teI the equilib illn position

for <iIn(l,),merO .: o (100>, <1iO>, and <11l> direct ions

for r,i+ in KC] arn rt-lat ed sys- tems. We IFtve ext ended their work
+

by mappilog out tle poteit i-i] 1. )y the Li for displacements

along these symmetry direct ons This mapping was accom)lished
+

by fixing the position of the HADES core for the Li , leaving the

HADES shell free to polarize. The potentials used for this

calculation were identical to the Type I (Buckingham) potentials

of Catlow et. al. with one exception: the Li+-K short-range

interaction we used varied slightly frcm the form used by Catlow

et. l , but the difference in reslts was negligible.

Calculations were performed at three latt ice constants to model
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the effect of hydrostatic pressure on off-center behaxior. The

lattice constants used were 3.116 A, 3.105 A, and 3.096 A,

corresponding to strains dr/r of 0.00%, 0.35%, and 0.64%

respectively. The lattice constant of 3.116 A was obtained by

extrapolating measured values to absolute zero(21,46) and the

shil]-model parameters used were fit to this value. The

calculated potentials are presented in Tables 3.1A, 3.1B, and

3.1C.

These potentials were then used as input to the programs

DYNFIT and DYNNUC to obtain the energy levels associated with the

nuclear motion. The symmetry direction <ill> was fitted exactly.

The one-dimensional calculation was performed with 40 basis

functions, i. e. harmonic oscillator functions with quantum

numbers through 39. At least 64 three-dimensional basis

functions were used in the three-dimensional calculation, with

enough additional funf-tions included to complete the last
+

multiplet. The results for 7Li for the three lattice constants

are presented in Tables 3.2A, 3.2B, and 3.2C; those for 6Li+ are

presented in Tables 3.3A, 3.3B, and 3.3C. The results quoted are

for the first three tunnelling multiplets. In some cases states

from the fourth tunnelling mu]tiplet were lower in energy than

some of the states from the third tunnelling multiplet; these

states have not been listed.
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TABLE 3. 1A

potential from HADES Li in KCI Lattice constant 116 A

x x vO0 VIIO vI11
(Lattice). ( } V (eV) 

(V

units

0. 
-I.07444 -1.07444 -1,07444

0.05 0.1558 --1.08256 --1.09054 -1.09887

0.10 0.3116 -1.0913f, -1.11038 -1.12567

0.15 0.4674 -1.08563 -1.10594 -1.12685

0.20 0.6232 -1.06012 -1.06844 -1.09442

0.30 0.9348 -0.93592 -0.87808 -0.93588

0.40 1.2464 -0.70860 -0.56621 --0.73841

0.401 1.249516 -0.70580 -0.56266 -0.73695

TABLE 3.lB

potential from HADES 
Li + in KCI Lattice constant 3.105 A

x X V100 VIlO V1II

(Lattice) (A) (eV) (eV) (eV)

units

0. 0. --i.11852 -1.11852 -1.11852

0.05 0.15525 --l.12507 -1.13134 --1.13671

0.10 0.31050 -1.13084 -1.14480 -1.15501

0.15 0.46575 -1.12267 --. 13549 -1.14826

0.20 0.62100 -1 09423 -. 09119 -1.10854

0.30 0.93150 -0.96541 -0.89273 -0.93806

0.40 1.24200 -0.73077 -0.56696 -0.73530

0.401 1.245105 -0.72790 -0.56327 -0.73381

TABIF 3. 1 c

Potent il from HADF.S + iii 9CI Tat I jce constant 3.096 A

X x VIO0 VI0 Vlil

(Lattice) (A) (eV) (eV) (eV)

. . -I.1I5606 - .15606 -1.15606

0,05 0.1548 -1.16207 --1.16569 -1.16953

0.10 0.3096 -1.16470 -1.17461 -1.18057

0.15 0.4644 --1.15448 -1.16111 -1.16750

0.20 0.6192 --1.12400 -1.11486 -1.1 2146

0.30 0.9288 -0.99075 -0.90660 -0.94025

0.40 1.2384 -0.75080 -0.56916 -0.73362

0.401 1.241496 -0.74787 -0.56535 -0.73212
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TABLE 3.2A

Spectrum from HADES 
7 Li+ in KCI Lattice constant 3.116 A

Symmetry Multiplicity Energy Energy
(1-dim) (full)

Ig (meV) (meV)

AIg 1 0.00000 0.00000

T l 3 1.00333 1.23948

T 3 2.00666 2.380852g

1 3.01000 3.69150

A g 1 12.70836 12.41915

Tlu 3 13.71169 14.31878

9 2 12.70836 16.39985
g

T 3 14.71502 16.46385

T2u 3 14.71169 17.57417

1 20.37060 21.20711
'2 u

T 2 g 3 19.36726 22.98523

T 1  3 18.36393 23.66323

T 3 19.36726 25.74398

E 2 20.37060 26.43655
u

Absolute energy for ground state:

(1-dim calculation) -1.10862038 eV

(full calculation) = -1.10445106 eV
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TABLE 3.3A

Spectrum from HADES 61,j+ in KCI Lattice constant = 3.116 A

Symmetry Multiplicity Energy Energy
(1-dim) (full)
(meV) (meV)

A1g 1 0.00000 0.00000

Tlu 3 1.35553 1.68724

T 2g 3 2.71106 3.23067

A 2 u 1 4.06659 4.91045

A g 1 13.72994 13.52077

T 3 15.08547 15.86670

E 2 13.72994 17.71742g

T2g 3 16.44099 18.47260

T 3 15.08547 19.30920

A2  1 23.16726 24.31652

T2U 3 21.81173 5.98957

T 3 20.45620 26.53393

T 1 g 3 21.81173 28.98501

E 2 23.16726 29.92402

Absolute energy for ground state:

(1-dim calculation) = -1.10742789 eV

(full calculation) = -1.10308212 eV
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TABLE 3.2B

Spectrum from HADES 7 Li + in XC] Lattice constarit = 3.105 A

Symmetry Multiplicity Energy Energy
(1-dim) (full)
(meV) (meV)

A g 1 0.00000 0.00000

Tlu 3 2.06491 2.63369

T'g 3 4.12983 5.07227

AOu 1 6.19474 7.48192

Alg 1 12.49671 12.90000

E 2 12.49671 15.58098
g

T u 3 14.56162 15.83729

T 3 14.56162 18.066732u

T 3 16.62653 18.862462g

T 3 20.09107 2F.11011I U

A 21l 24.22090 26.21371

T 3 22.15598 26.57104

T 3 22.15598 29.01482ig

E 2 24.22090 30.65382u

Absolute energy for ground state:

(1-dim calculatioii = .-1.13760747 eV

(fll cal l.7at iorl) = -1. 13480878 eV
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TABLE 3.3B

Spectrum from HlADES 6Li + in KCI Lattice constant 3.105

Symmetry Multiplicity Energy Energy

(I-dim) (full)
(meV) (meV)

Alg 1 0.00000 O.CO000

Tlu 3 2.58874 3.28484

T 2g 3 5.17748 6.32304

A 1 7.76623 9.28258
2u

A g 1 13.82501 14.46373

E 2 13.82501 17.29709

T 3 16.41375 17.98298

T2u 3 16.41375 20.37503

T2g 3 19.00250 21.57985

T 3 22.47613 29.36914

A 2 u 1 27.65361 30.00528

T2g 3 25.06487 30.15016

Tlg 3 25.06487 32.80254

E 2 27.65361 34.83988
u

Absolute energy for ground state:

(1-dim calculation) = -1.13673195 eV

(full calculation) = -1.13382648 eV

I
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TABLE 3.20

Spectrum from HADES 7 Li + in Kol Lattice constant 3.096 A

Symmetry Multiplicity Energy Energy
(1-dim) (full)

(meV) (meV)

Alg 1 0.00000 0.00000

Tlu 3 3.35972 4.07720

T2U 3 6.71945 8.07992

A,u 1 10.07917 11.81300

A 1g 1 13.26197 14.60429

E 2 13.26197 16.01807g

T 3 16.62170 18.57240

T2u 3 16.62170 19.94617

T 2 g 3 19.98142 22.63419

3 22.17439 26.86913

Tg 3 25.53412 30.68311

A2u 1 28.89384 31.89225

Tlg 3 25.53412 32.58917

E 2 28.89384 35.54164
u

Absolute energy for ground state:

(1-dim calculation) = -1.16379057 eV

(full calculation) = -1.16540975 eV
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TABLE 3.3C

Spectrum from HADES 6 Li + in KC1 Lattice constant = 3.096 A

SymMetry Multiplicity Energy Energy
(2-dim) (full)

(meV) (meV)

A 1 0.00000 0.00000

T 3 4.00281 4.83966

T 3 8.00562 9.56692

A 2 u 1 12.00843 13.96878

A 1 g 1 14.81755 16.41344

E 2 14.81755 17.96893g

T lu 3 18.82036 21.07897

T 2 u 3 28.82036 22.60192

T2g 3 22.82317 25.81806

T 3 24.77582 30.11480

T2g 3 20.77863 34.5899r,

A2u 1 32.78144 36.12143

T g 3 28.77863 38.08290

F 2 32.78144 40.18444u

Absolute energy for ground state:

(1idim calculation) -1.16466578 eV

(full calculat ion) -1.16293246
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To test the effect of changing the direction of exact fit,

-alcula-ti,3ns were also performed for 7 Li using the data from

L.tti~tt constant 3.116 A as fitted exactly along the <100>

direction. The results of this test are presented in Table 3.4.

While this caused results from the one-dimensional calculation to

vary by a factor of two, the results from the full calculation

differed by only 10-20%. Note that since the minima are located

dllonrg the <111> direction, we expect the results to be the most

reliable when this is the direction fitted exactly.

3.2 ICECAP-Generated Potentials

Diffic-ilties were encountered in attempting to apply ICECAP

to the ioblem of Ti+ in KCI. Specifically, HADES had trouble

converging for certain cases, among which were all the cases

involving Kunz-Klein localization. Thus all the cases for which

numbers have been obtained were calculated using localization by

means of orhital]; with restricted spatal range and variational

freedom. These cases are summarized in Table 3.5.

The quantim-mechanical cluster in each of the cases

considered consisted of the Li + ion surrounded by its 6 nearest-

neighbor Cl ions. The basis sets useC for each ion were taken

from Huzinaga.(47) For Li + , 4 S Gaussians were used, for Cl , 9

S and 6 P Gaussians were used. Basis Set I consisted of just

these functions, and used BHS norm-conserving pseudopotentials to
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TABLE 3.4

+
Sjetrum from HADES 7L i in KC1 Lattice constant 3.116 A

Potentials fitted exactly along the <100> direction

Symmetry Multiplicity Energy Energy
(1-dim) (full)
(meV) (meV)

A 1 0.00000 0.00000Ig

T 1  3 2.01898 1.03885

T 3 4.03796 1.98211

A2  1 6.05694 3.15765

A 1 15.28251 13.39703

T 3 17.30149 15.33606

F 2 15.28251 16.12112

T2g 3 19.32047 17.05272

T2 17.30149 17.147'0

T 3 24.44353 23.10798-lu

T2g 3 26.46251 2'.15310

A 1 28.48149 24.71604

T g 3 26.46251 24.73500

E 2 28.48149 26.14873U

Absolute energy for ground state:

(1-dim calculation) = -1.10094867 eV

(full calculation) = -1.10538334 eV
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replace the cores of the Cl ions.(40) In Basis Set II no such

pseudopotertials were used, also an additional Gaussian was

placed at the midpoint of each Li + - Cl- bond.

The HADES potentials used were the same potentials used in

the HADES-only phase of this investigation, that is, Buckingham

potentials from Catlow et. al.(48)

All the cases reported were run with a lattice constant of

3.116 A. In the calculation listed as "Mobile QM Region" the

overall minimization routine within ICECAP was allowed to vary

the position- , of the quantum mechanical cluster; this calculation

used considerahle amounts of CPU time. To reduce the amount of

CPU time required, other calculations were performed with the

quantum-mechanical cluster fixed in the positions given by the

HADES-only run from the first part of this investigation. The

UHF-o'ly run was performed in this same manner; the same nearest-

neighbor quantum-mechanical cluster was embedded in a charge

array extending out to the 15th shell of neighbors. The quantum-

mechanical cluster had positions as determined by the HADES-only

calculation; the point ions in the charge array were all at the

perfect-lattice positions.
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Due to constraints on available computer time, the complete

potential predicted by UHF or ICECAP could not he mapped out;

only the barrier heights along the <100> and <111> directions

could be determined. Hence, DYNFIT and DYNNUC were not used in

these cases.
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TABLE 3.5

UFF arid ICECAP Results 
i+ in KCI Lattice constant 3.116 A

Cilcullation HADES alone UHF alone

Basis Set II

<000 E =  -1.07444 eV E = -76154.670 eV

F 0> -1.08b36 eV F =  -76154,736 eV

,IIE 1 . 1285 oV E -76154.924 eV

calc21 iDI1 ICECAP 
ICECAP

Basis set I Basis set I

Fi,-:ed QM Region" 
Mobile QM Region

E -2598.05768 eV 
E -2598.51849 eV

S100> F - -2597.85779 eV F -2598.40526 eV

111> E -2597.45252 eV

Calculat ijol ICECA P
Bas.is ;et II

Fixed QM1 Regior

<000' E = --748 6. 10010 eV

<100> E _74885.7912o eV

E -74885.12722 eV

<000> ConfiguratiDli 
with Li at

. . 1 ]att i.e constallts.

<1001 Configuration1 wi t] Li at

0. 15 0. 0 lat t i& c<cnStar~t'"

<lf 1> Configuration with Li at

0.15 0.15 .95 lzittice conSt,•
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CHAPTER 4

CONCLUSIONS

The goal of this stuidy has been to construct a theoretical

model for an isovalent substitutional impurity in an ionic

crystal. Two approaches to tle const'ruction of such a model have

been presented, one using the classical lattice program HADES to

jeiierate the needed potential s, and the other using the embedded-

lulster program ICECAP. Conclusions from each approach will he

presented separately, followed by conclusions pertaining

specifically to the programs DYNFIT and DYNNUC.

4.1 Conclusions from HADES Work

A classical shell-model approach with interactions defined

by Buckingham potentials has been shown to reproduce well the

qualitative behavior of Li + in KC and other off-center systems.

That is, it predicts off-center behavior in the systems known to

be off--center,, and similarly for on-centei beha ior with a few

exceptions, and it successfully predicts that slightly decreasing

the lattice constant will drive off-cener systems back on-

center. The two serious discrepancies reported by Catlow

et. al.(21) were predictions of off-center behavior for Li+ in

RbC] arid F in NaT where on--center behavior has been indicated

experimentally; they suggest further experimental investigation
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is warranted in these cases.

But that is not all we can learn from the paper of Catlow

et. al. We can compare the difference in energy between on-

,enter and off-center positions they report to the barrier

heights calculated from measured absorption lines by Devaty and

Sievers. (22) The results from Devaty and Sievers for the case of

.ero strain are that the barrier height is 7.4 meV for their fit

to the form Ax 2 + Bx4 a;] 9.9 meV for their f t to the form
- Cx 2

Ax z + Be- . The average of the results for the three symmetry

directions from Catlow et. al. is 16 meV. Computing the

turinelling slitl ligs provides a mnrf- stringent test of the form

of the potential generated by HADES. Thus we compare the

mltip.i ity-weig].ted average split tings;

I: A = (Al + 3n s+ ),/5

(as defined in Figure 1.1) calcuilated from the HADES data at

3.116 A:

7 A = 1.19485 meV

A = 1.26201 meV

to experimental data of:
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, = 0.102 meV

s,5 = 0.143 meV

from specific heat measurements(15) and

71S = 0.095 me'V7

6A = 0.100 meV

from phoncrn spectroscopy. (14) We note that the discrepancy in

splittings is around a factor of ten, significantly worse than

the factor of two discrepancy in harrier heights.

We are also interested in calculating the Grueneisen

parameters at zero strain, as defined in Chapter 1. Calculating

these from the multiplicity-weighted average splittings at

3.116 A and 3.105 A, we obtain GF = 66 arid 7F = 60. This can be

compared with the best experimental determination, by Dobbs and

Anrlerson,(17) of F 150 independant of isotope. It can also be

compared to a naive calculation using the model of Gomez

fet. al.(17,4) In this model the potential is taken to consist of

isotropic harmonic oscillator potentials centered at the <111>

minima (edge tunnelling dominating). It is assumed that small

changes in the lattice parameter change only the separation

between wells and not their oscillator frequencies w0 . The

splitting can then be written:
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n = 2x 0 S(x 0 )K

for 2x0 the separation between wells along a cube edge, K a

parameter independant of x0 , and S(x0 ) the overlap integral

between wavefunctions on wells connected by a cube edge:

S~lxo = - MWOo ( X0 ) 2 .,T)3(x 0 ) =e

where M is the mass of the Li 0ion. Assuming x0 is proportional

to the lattice constant, the logarithmic derivative can then be

computed

- =  -d( nA)/d(InV) = -3d(lnA)/d(Inx0 ) 3[2Mu 0 (x 0 )2/' -/]

Evaluating 'i from the ohservat i n of a second tunnelling

multiplet at abouit 4.5 meV above the first tunnIell ing multiplet,

taking xO = 0.7 A frm min estimate of 1.2 A for the distance from

the origin to the minimum, (3) and using M = 7 u, we obtain

F = 19. Thus the HADES data does significantly better than this

naive model at predicting the Griieneisen param(,ter.

4.2 Conclusions from ICECAP Work

Consider the barrier heights as given by the UHF and ICECAP

calculations with basis set 1I. The barrier heights (for V0 the

ore-dimensional potential) from the UHF calculation are

I mammmmmnmli a
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<100> 309 meV

<] l> 324 meV

and those from the ICECAP calculation are

<100> 66 meV

<21> 85 meV

which may be compared with the previously cited fits to

experimenlal data of 7.4 meV or 9.9 meV.

We must conclude that UHF and ICECAP in its present form are

unable to match HADES for quantitative prediction of off-center

bt .avior for Li + in KCI. In one sense, that is not surprising,

as the energy differences between the on-center configuration and

the off-center configuration along the <Il> direction are on the

order of 30 meV. Noone is claiming that even the component parts

of ICECAP, i. e. HADES ard UHIF, are routinely capable of

accuracies on that scale. With extreme care accuracies of a few

eriths of an eV can lt obtained with UHF when a correlation

correction (MBPT) is applied. On appropriate classes of problems

HADES may also be capable of accuracies on that order.

Nevertheless, for this part:icular system we might hope that the

random errors in both methods as used within ICECAP and in the

interaction between them would remain constant. The main reason

these errors might be hoped to remain constant is that the

electronic wavefunction is in its ground state throughout this

problem, and the changes in the wavefunction are not drastic.
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Approaching the matter from another perspective, both HADES

and UHF in principle include all the essential physics for a

qualitative prediction of off-center behavior. Specifically,

they each model Pauli repulsion and attraction due to induced

polarization. The shortcomings of each model are different. The

customary way of constructing an UHF model for this problem would

be to use a point-charge array for sites not treated quantum-

mechanically and ignore relaxation and polarization of these

sites. HADES picks up this relaxation and polarization, but

cannot model the changes in the interactions near the origin due

to relaxation of the electronic wavefunction. Thus a combination

of the two methods along the lines of ICECAP is an obvious way to

attempt to overcome the shortcomings of both methods. With that

in mind we may conclude that the features neglected by UHF are

more important than those neglected by HADES for obtaining

numerical predictions. As for why ICECAP is worse than both

models taken separately, that can probably be ascribed to a

mismatch between the HADES and UHF interactions. If the

effective interaction between the quantum mechanical sites is

different than the HADES interactions, a nonphysical strain will

be observed at the boundary between the, two regions. Since no

attempt was made to ratch the HADES and UHF interactions, it is

easy to assume that such an unphysical strain was affecting these

calculations, causing ICECAP to give numerical results less

reliable Llan either of its co--tituent odels taken -epnratpy.

Nevertheless, in conclusion, I suggest that when ICECAP is better

-- g n l m
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understood, and a way to insure consistency between the HADES and

UHF portions of ICECAP is well developed, that this problem he

taken up again as a test case because of its extreme sensitivity.

4.3 Conclusions Pertaining to DYNFIT and DYNNIJC

The computer programs DYNNUC and DYNFIT seemed to work quite

well within the approach used in constructing them. If a more

efficient way of evaluating the Hamiltoiiian matrix elements for

the three-dimensionit] calt.ulatiorn could be 'ound, that would

allow more three-dimensional functions to be used, which would

improve convergence in the higher tunnel ling multiplets. Beyond

that, two improvements in the approach could be contemplated.

First, since three arbitrary functions are used as input to

DYNFIT, one might consider whether it might generate a third

indeperndant furc7t ion. Thinking along the lines of expanding the

discrepancy between the form V0 (x) + V0 (y) + V0 (z) and the exact

function ir angular momentum functions and recalling that the

first functions consistenit with cubic symmetry following P. = 0

are A = 4, leads one to suggest adding a term V (r,o,4). Thisg

might be expected to be especially important for systems with

F off-center, as the minima in these systems have been

dcterminpd experimentally to lie along the <110> direction.

Hence the approximation V0 (x) + V0 (y) + V0 (z) is not as good a
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starting point for such systems.

Second, consider a way to take into account the motion of

the nearest-neighbor nuclei. Let the effective coordinate cq

denote a spherically symmetric displacement of the nearest-

neighbor nuclei from the configuration of minimum energy. The

Hamiltonian then becomes:

H = HO (r) + V(q,r)
2Mq

Pick V(q,r) harmonic in q:

I

V(qr) - M Qz(r)
2 c

Define CZ (0) to e (0 ) 2 and expand the wavefunction associated

with q in harmonic oscillator functions of frequency Oo • Then

the potential energy matrix element simplifies to:

2Mq <qw(r) 12 (r)P' (r) >  <q)(q)Iq 2 IW' (q)>

The matrix element involving q is trivial from properties of

harmonic oscillator functions. Choosing o() = (QO)2 will leave

the level structure unchanged, so to make this calculation

physically significant we must include some non-constant term.

An obvious choice is:

J2 (-r) = (O 0 )2 (1 +- -xr 2 )

where a is determined from 02 (r) evaluated at the stable minimum.
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Note that there is no obvious reason the a so defined must be

positive. Since r2 = x2 + y 2 + z 2 this form will allow the

matrix element <W(r)lQz ( ))w(.)> to factor into one-dimensional

integrals, so it will be computationally very tractable. The use

of only the basis function n=O for the wavefunction in q ought to

be sufficient, but n=2 might be included, if only to check

corivergence of the series.
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APPENDI

Md ]liellt 1c ] iV rig oros lS derivat ioi

.zri,- t(.i e(,

t

. * -. " i A arid

anid considEr the exact soluti ons to the equation

(F + VM + VS T =.
A A A - ii

where T is an arbitrary Hermitian operator.

We again denote the cluster by A, and we define

A+
PA a ¢.(x) 4. + '

1=OCC
i in A

We recognize that for any k in the occupied snace

P k = ( k and qkap rk

and choose T to satisfy

S
T = pA VA A

Then the eqiation we are solving becomes
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F VM S -r VS q T
(A + A + A PAVA ~A'i

which can be rearranged into the form

(FA + VA + VA- PAVA PA )>V rr.4

whic~h is the same equation derived approximately in the b.ody .)f

this paper.
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